#!/usr/bin/env python3 from __future__ import annotations from pathlib import Path from urllib import request import os import shlex import subprocess import sys from typing import Any, Sequence import logging import json import argparse curdir = Path(os.path.dirname(__file__)) logger = logging.getLogger("bench") MODEL_DIR = curdir / "bench-TriLMs-models" LLAMA_CPP_PATH = curdir / "." MODEL_SIZES = ("1.5", "2.4", "3.9") ALL_TYPES = ("TQ1_0", "TQ2_0", "Q4_K_M", "Q8_0", "F16", "BF16") GPU_TYPES = ("TQ2_0", "Q4_K_M", "Q8_0", "F16") def gather_models(sizes: Sequence[str] = MODEL_SIZES): logger.info("Gathering models") if not MODEL_DIR.exists(): MODEL_DIR.mkdir(parents=True, exist_ok=True) for size in sizes: filename = f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf" file = MODEL_DIR / filename if not file.exists(): url = ( f"https://huggingface.co/compilade/quant-tests/resolve/main/{filename}" ) logger.info(f"Fetching {filename} from {url}") request.urlretrieve(url, file) def build_llama_cpp(options: Sequence[str]): logger.info("Building llama.cpp") os.chdir(LLAMA_CPP_PATH) builddir = LLAMA_CPP_PATH / "build" if builddir.exists(): os.system("pwd") os.system("rm -Ir build") builddir.mkdir() os.chdir(builddir) os.system(shlex.join(("cmake", "..", *options))) os.system("make -j llama-bench llama-quantize test-backend-ops") def quantize(types: Sequence[str] = ALL_TYPES, sizes: Sequence[str] = MODEL_SIZES): logger.info("Make all model types we'll test") for size in sizes: source = MODEL_DIR / f"TriLM_{size}B_Unpacked-TQ1_0-F16.gguf" for ty in types: target = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf" if not target.exists(): command = shlex.join( ( str(LLAMA_CPP_PATH / "build" / "bin" / "llama-quantize"), "--allow-requantize", str(source), str(target), ty, ) ) logger.info("Running: %s", command) os.system(command) def llama_bench( repetitions: int = 5, types: Sequence[str] = ALL_TYPES, sizes: Sequence[str] = MODEL_SIZES, ) -> list[dict[str, Any]]: logger.info("Test each model one by one for different numbers of threads") threads = [2**i for i in range(5) if 2**i <= os.cpu_count()] logger.info(f"Numbers of threads to be tested: {threads}") out = [] for size in sizes: for ty in types: for th in threads: model_path = MODEL_DIR / f"TriLM_{size}B_Unpacked-{ty}.gguf" args = [ "-v", "-m", str(model_path), "-t", str(th), "-r", str(repetitions), "-p", "512", "-n", "128", "-o", "json", ] result = subprocess.run( [str(LLAMA_CPP_PATH / "build" / "bin" / "llama-bench")] + args, capture_output=True, ) logger.debug(result.stderr) new_output = json.loads(result.stdout) logger.info(json.dumps(new_output, indent=4)) out.extend(new_output) return out def test_backend_perf() -> str: result = subprocess.run( [ str(LLAMA_CPP_PATH / "build" / "bin" / "test-backend-ops"), "perf", "-o", "MUL_MAT", ], capture_output=True, ) return result.stdout.decode(encoding="utf-8") def parse_args(args: Sequence[str]): parser = argparse.ArgumentParser( prog=args[0], description="Benchmark ternary models" ) parser.add_argument("--gpu", action="store_true", help="Run benchmarks on GPU") parser.add_argument("--cpu", action="store_true", help="Run benchmarks on CPU") parser.add_argument( "--llama-cpp-path", type=Path, default=LLAMA_CPP_PATH, help="Path to a llama.cpp checkout", ) parser.add_argument( "--model-dir", type=Path, default=MODEL_DIR, help="Where the tested models will be stored", ) parser.add_argument( "--repetitions", type=int, default=5, required=False, help="How many repetitions are run for each test", ) parser.add_argument( "--out", type=Path, default=Path(os.path.curdir) / "result.json", help="Path of the benchmark results to be written", ) return parser.parse_args(args[1:]) if __name__ == "__main__": args = parse_args(sys.argv) LLAMA_CPP_PATH = args.llama_cpp_path MODEL_DIR = args.model_dir results = [] repetitions: int = args.repetitions if args.cpu: gather_models() build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CPU=ON"]) quantize() results.extend(llama_bench(repetitions=repetitions)) if args.gpu: gather_models() build_llama_cpp(["-DGGML_NATIVE=ON", "-DGGML_CUDA=ON", "-DGGML_CUDA_F16=ON"]) quantize() results.extend(llama_bench(repetitions=repetitions, types=GPU_TYPES)) cpuinfo = subprocess.run(["lscpu"], capture_output=True).stdout.decode( encoding="utf-8" ) mulmat_perf = test_backend_perf() final_result = { "cpuinfo": cpuinfo, "mulmat_perf": mulmat_perf, "results": results, } with open(args.out, "w") as f: json.dump(results, f, indent=4)