codefuse-admin commited on
Commit
8b76ef3
·
verified ·
1 Parent(s): 5b9fbfd

Upload 9 files

Browse files
MODEL_LICENSE.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Microsoft.
2
+ Copyright (c) Microsoft Corporation.
3
+
4
+ MIT License
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the "Software"), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,93 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ frameworks:
3
+ - Pytorch
4
+ license: other
5
+ tasks:
6
+ - text-embedding
7
+ ---
8
+
9
+ ## CodeFuse-CGE-Small
10
+ <p align="center">
11
+ <img src="https://modelscope.cn/api/v1/models/codefuse-ai/CodeFuse-QWen-14B/repo?Revision=master&FilePath=LOGO.jpg&View=true" width="800"/>
12
+ <p>
13
+
14
+ ## Model Description
15
+ CodeFuse-CGE-Small is the Small version of the CodeFuse-CGE family which is fine-tuned based on Phi-3.5-mini-instruct. CodeFuse-CGE-Small is distinguish on text2code task for it's powerful ability of capturing the semantic relationship between code and text.
16
+
17
+ This model has the following notable features:
18
+ ● Instruction-tuning is enabled for both query and code snippet sides.
19
+ ● The model obtains sentence-level and code-level representations through a layer of cross-attention computation module.
20
+ ● The model has a smaller dimensional size without significant degradation in performance.
21
+
22
+ Model Configuration
23
+ Model Size: 3.8B
24
+ Embedding Dimension: 1024
25
+ Hidden Layers: 32
26
+ Max Input Tokens: 1024
27
+
28
+
29
+ Requirements
30
+ ```
31
+ flash_attn==2.4.2
32
+ torch==2.1.0
33
+ accelerate==0.28.0
34
+ transformers==4.43.0
35
+ ```
36
+
37
+
38
+ ## How to Use
39
+ ### transformers
40
+ ```
41
+ from transformers import AutoTokenizer, AutoModel
42
+
43
+ model_name_or_path = "CodeFuse-CGE-Small"
44
+ model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, truncation_side='right', padding_side='right')
46
+ model = model.to(torch.bfloat16)
47
+
48
+ if torch.cuda.is_available():
49
+ device = 'cuda'
50
+ else:
51
+ device = 'cpu'
52
+ model.to(device)
53
+
54
+ prefix_dict = {'python':{'query':'Retrieve the Python code that solves the following query:', 'passage':'Python code:'},
55
+ 'java':{'query':'Retrieve the Java code that solves the following query:', 'passage':'Java code:'},
56
+ 'go':{'query':'Retrieve the Go code that solves the following query:', 'passage':'Go code:'},
57
+ 'c++':{'query':'Retrieve the C++ code that solves the following query:', 'passage':'C++ code:'},
58
+ 'javascript':{'query':'Retrieve the Javascript code that solves the following query:', 'passage':'Javascript code:'},
59
+ 'php':{'query':'Retrieve the PHP code that solves the following query:', 'passage':'PHP code:'},
60
+ 'ruby':{'query':'Retrieve the Ruby code that solves the following query:', 'passage':'Ruby code:'},
61
+ 'default':{'query':'Retrieve the code that solves the following query:', 'passage':'Code:'}
62
+ }
63
+
64
+ text = ["Writes a Boolean to the stream.",
65
+ "def writeBoolean(self, n): t = TYPE_BOOL_TRUE if n is False: t = TYPE_BOOL_FALSE self.stream.write(t)"]
66
+ text[0] += prefix_dict['python']['query']
67
+ text[0] += prefix_dict['python']['passage']
68
+ embed = model.encode(tokenizer, text)
69
+ score = embed[0] @ embed[1].T
70
+ print("score", score)
71
+
72
+ ```
73
+
74
+ ## Benchmark the Performance
75
+ We use MRR metric to evaluate the ability on text2code retrieval tasks: AdvTest, CosQA, CSN
76
+
77
+
78
+ ![result](./result.png)
79
+
80
+ ## Acknowledgement
81
+ Thanks to the authors of open-sourced datasets, including CSN, Adv, CoSQA.
82
+
83
+ ## License
84
+ Since CodeFuse-CGE-Small is fine-tuned based on Phi3 model, our usage license follows the same terms as that of Phi3 model.
85
+
86
+ ## 加入我们
87
+ 我们是平台技术事业群AI Native团队,负责蚂蚁蚂蚁集团平台工程的智能化,团队成立3年多以来,支持了蚂蚁集团云计算基础设施智能化运维的升级改造。团队的Mission是,通过世界级的技术创新和影响,构建有广泛用户的算法服务和平台,支撑内外部产品和业务落地。团队秉承创新基因,在支撑业务落地的同时,推动技术影响。3年以来在ICLR、NeurIPS、KDD、ACL等顶会发表论文20余篇,创新业务结果获得两次蚂蚁技术最高奖T-Star,1次蚂蚁集团最高奖SuperMA。开源项目CodeFuse获得4K点赞(2024年2月),Huggingface和modelscope上模型累积下载量超过150万次。
88
+
89
+ 我们正在寻找行业中的佼佼者加入我们的团队!如果您希望在一个充满活力、创新和卓越文化的环境中发展您的职业生涯,欢迎您查看我们的社招&校招机会,加入我们,一起创造下一个行业里程碑。
90
+
91
+ 校招:https://hrrecommend.antgroup.com/guide.html?code=8uoP5mlus5DqQYbE_EnqcE2FD5JZH21MwvMUIb9mb6X3osXPuBraG54SyM8GLn_7
92
+
93
+ 社招:https://talent.antgroup.com/off-campus-position?positionId=1933830
config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "CodeFuse_CGE_Small",
3
+ "architectures": [
4
+ "CodeFuse_CGE_Small"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_codefuse_cge_small.CodeFuseCGESmallConfig",
10
+ "AutoModel": "modeling_codefuse_cge_small.CodeFuse_CGE_Small"
11
+ },
12
+ "bos_token_id": 1,
13
+ "compress_dim": 1024,
14
+ "embd_pdrop": 0.0,
15
+ "embedding_dim": 4096,
16
+ "embedding_method": "pma",
17
+ "eos_token_id": 32000,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 3072,
20
+ "inf_seq_length": 1024,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 8192,
23
+ "keep_max_layer": 24,
24
+ "max_position_embeddings": 131072,
25
+ "max_window_layers": 28,
26
+ "num_attention_heads": 32,
27
+ "num_hidden_layers": 32,
28
+ "num_key_value_heads": 32,
29
+ "original_max_position_embeddings": 4096,
30
+ "pad_token_id": 32000,
31
+ "padding_side": "right",
32
+ "pma_ln": true,
33
+ "pma_norm": false,
34
+ "pma_norm_mode": "post_normal",
35
+ "pma_num_heads": 32,
36
+ "resid_pdrop": 0.0,
37
+ "rms_norm_eps": 1e-05,
38
+ "rope_scaling": {
39
+ "long_factor": [
40
+ 1.0800000429153442,
41
+ 1.1100000143051147,
42
+ 1.1399999856948853,
43
+ 1.340000033378601,
44
+ 1.5899999141693115,
45
+ 1.600000023841858,
46
+ 1.6200000047683716,
47
+ 2.620000123977661,
48
+ 3.2300000190734863,
49
+ 3.2300000190734863,
50
+ 4.789999961853027,
51
+ 7.400000095367432,
52
+ 7.700000286102295,
53
+ 9.09000015258789,
54
+ 12.199999809265137,
55
+ 17.670000076293945,
56
+ 24.46000099182129,
57
+ 28.57000160217285,
58
+ 30.420001983642578,
59
+ 30.840002059936523,
60
+ 32.590003967285156,
61
+ 32.93000411987305,
62
+ 42.320003509521484,
63
+ 44.96000289916992,
64
+ 50.340003967285156,
65
+ 50.45000457763672,
66
+ 57.55000305175781,
67
+ 57.93000411987305,
68
+ 58.21000289916992,
69
+ 60.1400032043457,
70
+ 62.61000442504883,
71
+ 62.62000274658203,
72
+ 62.71000289916992,
73
+ 63.1400032043457,
74
+ 63.1400032043457,
75
+ 63.77000427246094,
76
+ 63.93000411987305,
77
+ 63.96000289916992,
78
+ 63.970001220703125,
79
+ 64.02999877929688,
80
+ 64.06999969482422,
81
+ 64.08000183105469,
82
+ 64.12000274658203,
83
+ 64.41000366210938,
84
+ 64.4800033569336,
85
+ 64.51000213623047,
86
+ 64.52999877929688,
87
+ 64.83999633789062
88
+ ],
89
+ "short_factor": [
90
+ 1.0,
91
+ 1.0199999809265137,
92
+ 1.0299999713897705,
93
+ 1.0299999713897705,
94
+ 1.0499999523162842,
95
+ 1.0499999523162842,
96
+ 1.0499999523162842,
97
+ 1.0499999523162842,
98
+ 1.0499999523162842,
99
+ 1.0699999332427979,
100
+ 1.0999999046325684,
101
+ 1.1099998950958252,
102
+ 1.1599998474121094,
103
+ 1.1599998474121094,
104
+ 1.1699998378753662,
105
+ 1.2899998426437378,
106
+ 1.339999794960022,
107
+ 1.679999828338623,
108
+ 1.7899998426437378,
109
+ 1.8199998140335083,
110
+ 1.8499997854232788,
111
+ 1.8799997568130493,
112
+ 1.9099997282028198,
113
+ 1.9399996995925903,
114
+ 1.9899996519088745,
115
+ 2.0199997425079346,
116
+ 2.0199997425079346,
117
+ 2.0199997425079346,
118
+ 2.0199997425079346,
119
+ 2.0199997425079346,
120
+ 2.0199997425079346,
121
+ 2.0299997329711914,
122
+ 2.0299997329711914,
123
+ 2.0299997329711914,
124
+ 2.0299997329711914,
125
+ 2.0299997329711914,
126
+ 2.0299997329711914,
127
+ 2.0299997329711914,
128
+ 2.0299997329711914,
129
+ 2.0299997329711914,
130
+ 2.0799996852874756,
131
+ 2.0899996757507324,
132
+ 2.189999580383301,
133
+ 2.2199995517730713,
134
+ 2.5899994373321533,
135
+ 2.729999542236328,
136
+ 2.749999523162842,
137
+ 2.8399994373321533
138
+ ],
139
+ "type": "longrope"
140
+ },
141
+ "rope_theta": 10000.0,
142
+ "sliding_window": null,
143
+ "tie_word_embeddings": false,
144
+ "torch_dtype": "bfloat16",
145
+ "transformers_version": "4.39.2",
146
+ "use_cache": true,
147
+ "use_sliding_window": false,
148
+ "vocab_size": 32064
149
+ }
configuration_codefuse_cge_small.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+
5
+ logger = logging.get_logger(__name__)
6
+
7
+
8
+
9
+ class CodeFuseCGESmallConfig(PretrainedConfig):
10
+ model_type = "phi3"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=32064,
16
+ hidden_size=3072,
17
+ intermediate_size=8192,
18
+ num_hidden_layers=32,
19
+ num_attention_heads=32,
20
+ num_key_value_heads=None,
21
+ resid_pdrop=0.0,
22
+ embd_pdrop=0.0,
23
+ attention_dropout=0.0,
24
+ hidden_act="silu",
25
+ max_position_embeddings=4096,
26
+ original_max_position_embeddings=4096,
27
+ initializer_range=0.02,
28
+ rms_norm_eps=1e-5,
29
+ use_cache=True,
30
+ tie_word_embeddings=False,
31
+ rope_theta=10000.0,
32
+ rope_scaling=None,
33
+ bos_token_id=1,
34
+ eos_token_id=32000,
35
+ pad_token_id=32000,
36
+ sliding_window=None,
37
+ embedding_method="pma",
38
+ inf_seq_length=1024,
39
+ padding_side="right",
40
+ compress_dim=1024,
41
+ keep_max_layer=32,
42
+ pma_num_heads=32,
43
+ pma_ln=True,
44
+ pma_norm=False,
45
+ pma_norm_mode="post_normal",
46
+ **kwargs,
47
+ ):
48
+ self.vocab_size = vocab_size
49
+ self.hidden_size = hidden_size
50
+ self.intermediate_size = intermediate_size
51
+ self.num_hidden_layers = num_hidden_layers
52
+ self.num_attention_heads = num_attention_heads
53
+
54
+ if num_key_value_heads is None:
55
+ num_key_value_heads = num_attention_heads
56
+
57
+ self.num_key_value_heads = num_key_value_heads
58
+ self.resid_pdrop = resid_pdrop
59
+ self.embd_pdrop = embd_pdrop
60
+ self.attention_dropout = attention_dropout
61
+ self.hidden_act = hidden_act
62
+ self.max_position_embeddings = max_position_embeddings
63
+ self.original_max_position_embeddings = original_max_position_embeddings
64
+ self.initializer_range = initializer_range
65
+ self.rms_norm_eps = rms_norm_eps
66
+ self.use_cache = use_cache
67
+ self.rope_theta = rope_theta
68
+ self.rope_scaling = rope_scaling
69
+ self._rope_scaling_adjustment()
70
+ self._rope_scaling_validation()
71
+ self.sliding_window = sliding_window
72
+
73
+ self.embedding_method = embedding_method
74
+ self.inf_seq_length = inf_seq_length
75
+ self.padding_side = padding_side
76
+ self.compress_dim = compress_dim
77
+ self.keep_max_layer = keep_max_layer
78
+ self.pma_num_heads = pma_num_heads
79
+ self.pma_ln = pma_ln
80
+ self.pma_norm = pma_norm
81
+ self.pma_norm_mode = pma_norm_mode
82
+
83
+ super().__init__(
84
+ bos_token_id=bos_token_id,
85
+ eos_token_id=eos_token_id,
86
+ pad_token_id=pad_token_id,
87
+ tie_word_embeddings=tie_word_embeddings,
88
+ **kwargs,
89
+ )
90
+
91
+ def _rope_scaling_adjustment(self):
92
+ """
93
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
94
+ """
95
+ if self.rope_scaling is None:
96
+ return
97
+
98
+ rope_scaling_type = self.rope_scaling.get("type", None)
99
+
100
+ # For backward compatibility if previous version used "su" or "yarn"
101
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
102
+ self.rope_scaling["type"] = "longrope"
103
+
104
+ def _rope_scaling_validation(self):
105
+ """
106
+ Validate the `rope_scaling` configuration.
107
+ """
108
+ if self.rope_scaling is None:
109
+ return
110
+
111
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
112
+ raise ValueError(
113
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
114
+ f"got {self.rope_scaling}"
115
+ )
116
+ rope_scaling_type = self.rope_scaling.get("type", None)
117
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
118
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
119
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
120
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
121
+ if not (
122
+ isinstance(rope_scaling_short_factor, list)
123
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
124
+ ):
125
+ raise ValueError(
126
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
127
+ )
128
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
129
+ raise ValueError(
130
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
131
+ )
132
+ if not (
133
+ isinstance(rope_scaling_long_factor, list)
134
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
135
+ ):
136
+ raise ValueError(
137
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
138
+ )
139
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
140
+ raise ValueError(
141
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
142
+ )
model.safetensors.index.json ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7658954752
4
+ },
5
+ "weight_map": {
6
+ "mha_pma.S": "model-00002-of-00002.safetensors",
7
+ "mha_pma.mab.fc_k.bias": "model-00002-of-00002.safetensors",
8
+ "mha_pma.mab.fc_k.weight": "model-00002-of-00002.safetensors",
9
+ "mha_pma.mab.fc_o.bias": "model-00002-of-00002.safetensors",
10
+ "mha_pma.mab.fc_o.weight": "model-00002-of-00002.safetensors",
11
+ "mha_pma.mab.fc_q.bias": "model-00002-of-00002.safetensors",
12
+ "mha_pma.mab.fc_q.weight": "model-00002-of-00002.safetensors",
13
+ "mha_pma.mab.fc_v.bias": "model-00002-of-00002.safetensors",
14
+ "mha_pma.mab.fc_v.weight": "model-00002-of-00002.safetensors",
15
+ "mha_pma.mab.ln0.bias": "model-00002-of-00002.safetensors",
16
+ "mha_pma.mab.ln0.weight": "model-00002-of-00002.safetensors",
17
+ "mha_pma.mab.ln1.bias": "model-00002-of-00002.safetensors",
18
+ "mha_pma.mab.ln1.weight": "model-00002-of-00002.safetensors",
19
+ "plm_model.lm_head.weight": "model-00002-of-00002.safetensors",
20
+ "plm_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
21
+ "plm_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "plm_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
23
+ "plm_model.model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "plm_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "plm_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
26
+ "plm_model.model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
27
+ "plm_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
28
+ "plm_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
29
+ "plm_model.model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "plm_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "plm_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
32
+ "plm_model.model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
33
+ "plm_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "plm_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
35
+ "plm_model.model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "plm_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "plm_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
38
+ "plm_model.model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
39
+ "plm_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "plm_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
41
+ "plm_model.model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
42
+ "plm_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
43
+ "plm_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
44
+ "plm_model.model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
45
+ "plm_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
46
+ "plm_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
47
+ "plm_model.model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "plm_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "plm_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
+ "plm_model.model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
51
+ "plm_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "plm_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "plm_model.model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
54
+ "plm_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
55
+ "plm_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
56
+ "plm_model.model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
57
+ "plm_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "plm_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
59
+ "plm_model.model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "plm_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "plm_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
62
+ "plm_model.model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
63
+ "plm_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "plm_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
65
+ "plm_model.model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "plm_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "plm_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "plm_model.model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
69
+ "plm_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
70
+ "plm_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
71
+ "plm_model.model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "plm_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "plm_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
74
+ "plm_model.model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
75
+ "plm_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "plm_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
77
+ "plm_model.model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
78
+ "plm_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "plm_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
80
+ "plm_model.model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
81
+ "plm_model.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
82
+ "plm_model.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
83
+ "plm_model.model.layers.18.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "plm_model.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "plm_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
86
+ "plm_model.model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
87
+ "plm_model.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
88
+ "plm_model.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
89
+ "plm_model.model.layers.19.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
90
+ "plm_model.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "plm_model.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
92
+ "plm_model.model.layers.19.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
93
+ "plm_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "plm_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
95
+ "plm_model.model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "plm_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "plm_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
98
+ "plm_model.model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
99
+ "plm_model.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "plm_model.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
101
+ "plm_model.model.layers.20.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "plm_model.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "plm_model.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "plm_model.model.layers.20.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
105
+ "plm_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
106
+ "plm_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
107
+ "plm_model.model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
108
+ "plm_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
109
+ "plm_model.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
110
+ "plm_model.model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
111
+ "plm_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "plm_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
113
+ "plm_model.model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
114
+ "plm_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
115
+ "plm_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
116
+ "plm_model.model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
117
+ "plm_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
118
+ "plm_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
119
+ "plm_model.model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
120
+ "plm_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
121
+ "plm_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
122
+ "plm_model.model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
123
+ "plm_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
124
+ "plm_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
125
+ "plm_model.model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
126
+ "plm_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
127
+ "plm_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
128
+ "plm_model.model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
129
+ "plm_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "plm_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
131
+ "plm_model.model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
132
+ "plm_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
133
+ "plm_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
134
+ "plm_model.model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
135
+ "plm_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
136
+ "plm_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
137
+ "plm_model.model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "plm_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "plm_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
140
+ "plm_model.model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
141
+ "plm_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
142
+ "plm_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
143
+ "plm_model.model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
144
+ "plm_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
145
+ "plm_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
146
+ "plm_model.model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
147
+ "plm_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "plm_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
149
+ "plm_model.model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
150
+ "plm_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "plm_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
152
+ "plm_model.model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
153
+ "plm_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
154
+ "plm_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
155
+ "plm_model.model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "plm_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "plm_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
158
+ "plm_model.model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
159
+ "plm_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
160
+ "plm_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
161
+ "plm_model.model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
162
+ "plm_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
163
+ "plm_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
164
+ "plm_model.model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
165
+ "plm_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "plm_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
167
+ "plm_model.model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
168
+ "plm_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
169
+ "plm_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
170
+ "plm_model.model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
171
+ "plm_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
172
+ "plm_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
173
+ "plm_model.model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "plm_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "plm_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
176
+ "plm_model.model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
177
+ "plm_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
178
+ "plm_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
179
+ "plm_model.model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "plm_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "plm_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
182
+ "plm_model.model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
183
+ "plm_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "plm_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
185
+ "plm_model.model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
186
+ "plm_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
187
+ "plm_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
188
+ "plm_model.model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
189
+ "plm_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
190
+ "plm_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
191
+ "plm_model.model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "plm_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "plm_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
194
+ "plm_model.model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
195
+ "plm_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
196
+ "plm_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
197
+ "plm_model.model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
198
+ "plm_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
199
+ "plm_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
200
+ "plm_model.model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
201
+ "plm_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "plm_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
203
+ "plm_model.model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "plm_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "plm_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
206
+ "plm_model.model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
207
+ "plm_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
208
+ "plm_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
209
+ "plm_model.model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "plm_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "plm_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "plm_model.model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
213
+ "plm_model.model.norm.weight": "model-00002-of-00002.safetensors"
214
+ }
215
+ }
modeling_codefuse_cge_small.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import math
3
+ import os
4
+ import warnings
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ import torch.utils.checkpoint
10
+ from torch import nn
11
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
12
+ from transformers import PretrainedConfig
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache, DynamicCache
16
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
17
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import (
20
+ add_start_docstrings,
21
+ add_start_docstrings_to_model_forward,
22
+ is_flash_attn_2_available,
23
+ is_flash_attn_greater_or_equal_2_10,
24
+ logging,
25
+ replace_return_docstrings,
26
+ )
27
+ import numpy as np
28
+ from transformers import Phi3ForCausalLM
29
+ import inspect
30
+ import math
31
+ import os
32
+ import warnings
33
+ from typing import List, Optional, Tuple, Union
34
+ from tqdm import tqdm, trange
35
+ import torch
36
+ import torch.nn.functional as F
37
+ import torch.utils.checkpoint
38
+ from torch import nn
39
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
40
+
41
+ from transformers.activations import ACT2FN
42
+ from transformers.cache_utils import Cache, DynamicCache
43
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
44
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
45
+ from transformers.modeling_utils import PreTrainedModel
46
+ from transformers.utils import (
47
+ add_start_docstrings,
48
+ add_start_docstrings_to_model_forward,
49
+ is_flash_attn_2_available,
50
+ is_flash_attn_greater_or_equal_2_10,
51
+ logging,
52
+ replace_return_docstrings,
53
+ )
54
+ import numpy as np
55
+ import torch
56
+ import os
57
+ import argparse
58
+ import json
59
+ from tqdm import tqdm
60
+ from typing import cast, List, Union, Tuple
61
+ from transformers import AutoTokenizer, AutoModel # pylint: disable=C0413
62
+ from peft import LoraConfig, get_peft_model, TaskType
63
+ import time
64
+ import torch.nn.functional as F
65
+ import sys
66
+ import time
67
+ import torch
68
+ import torch.nn as nn
69
+ import torch.nn.functional as F
70
+ import numpy as np
71
+ from tqdm import tqdm, trange
72
+ from collections import defaultdict
73
+ from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
74
+ import torch.distributed as dist
75
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
76
+ import sys
77
+ import torch
78
+ import torch.nn as nn
79
+ import torch.nn.functional as F
80
+ import math
81
+ import re
82
+
83
+
84
+ class MAB_POST(nn.Module):
85
+ def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
86
+ super(MAB_POST, self).__init__()
87
+ self.dim_V = dim_V
88
+ self.num_heads = num_heads
89
+ self.fc_q = nn.Linear(dim_Q, dim_V)
90
+ self.fc_k = nn.Linear(dim_K, dim_V)
91
+ self.fc_v = nn.Linear(dim_K, dim_V)
92
+ if ln:
93
+ self.ln0 = nn.LayerNorm(dim_V)
94
+ self.ln1 = nn.LayerNorm(dim_V)
95
+ self.fc_o = nn.Linear(dim_V, dim_V)
96
+ nn.init.xavier_uniform_(self.fc_q.weight)
97
+ nn.init.xavier_uniform_(self.fc_k.weight)
98
+ nn.init.xavier_uniform_(self.fc_v.weight)
99
+ nn.init.xavier_uniform_(self.fc_o.weight)
100
+
101
+ def forward(self, Q, K, pad_mask=None):
102
+
103
+ Q_ = self.fc_q(Q)
104
+ K_, V_ = self.fc_k(K), self.fc_v(K)
105
+
106
+ dim_split = self.dim_V // self.num_heads
107
+ Q_ = torch.cat(Q_.split(dim_split, 2), 0)
108
+ K_ = torch.cat(K_.split(dim_split, 2), 0)
109
+ V_ = torch.cat(V_.split(dim_split, 2), 0)
110
+
111
+ pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1)
112
+ score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
113
+ score = score.masked_fill(pad_mask == 0, -1e12)
114
+ A = torch.softmax(score, 2)
115
+ A = A * pad_mask
116
+ O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
117
+ O = Q + O
118
+ O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
119
+ O = O + F.relu(self.fc_o(O))
120
+ O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
121
+ return O
122
+
123
+
124
+ class PMA(nn.Module):
125
+ def __init__(self, dim, compress_dim, num_heads, num_seeds, ln=False, pma_mode=None):
126
+ super(PMA, self).__init__()
127
+ self.S = nn.Parameter(torch.Tensor(1, num_seeds, compress_dim))
128
+ nn.init.xavier_uniform_(self.S)
129
+ if pma_mode == 'post_normal':
130
+ self.mab = MAB_POST(compress_dim, dim, compress_dim, num_heads, ln=ln)
131
+ elif pma_mode == 'pre_normal':
132
+ self.mab = MAB_PRE_NORMAL(compress_dim, dim, compress_dim, num_heads, ln=ln)
133
+ elif pma_mode == 'pre_gptj':
134
+ self.mab = MAB_PRE_GPTJ(compress_dim, dim, compress_dim, num_heads, ln=ln)
135
+ else:
136
+ raise ValueError(f"Error, the pma_mode {pma_mode} is not implemented !")
137
+
138
+ def forward(self, X, pad_mask):
139
+ if self.S.dtype != torch.bfloat16:
140
+ X = X.float()
141
+ return self.mab(self.S.repeat(X.size(0), 1, 1), X, pad_mask)
142
+
143
+
144
+ class CodeFuse_CGE_Small(PreTrainedModel):
145
+
146
+ def __init__(self, config):
147
+ super().__init__(config)
148
+ self.plm_model = Phi3ForCausalLM(config)
149
+ self.embedding_method = config.embedding_method
150
+ self.inf_seq_length = config.inf_seq_length
151
+ self.padding_side = config.padding_side
152
+
153
+ self.keep_max_layer = config.keep_max_layer
154
+ self.emb_dim = self.plm_model.model.embed_tokens.weight.size(1)
155
+ self.num_heads = config.pma_num_heads
156
+ self.ln = config.pma_ln
157
+ self.norm = config.pma_norm
158
+ self.compress_dim = config.compress_dim
159
+ self.pma_mode = config.pma_norm_mode
160
+ self.mha_pma = PMA(self.emb_dim, self.compress_dim, self.num_heads, 1, ln=self.ln, pma_mode=self.pma_mode)
161
+
162
+ def last_embedding(self, A, index):
163
+ bs, seq, emb = A.size()
164
+ res = A[torch.arange(bs), index, :]
165
+ return res
166
+
167
+ def mean_embedding(self, A, mask):
168
+ bs, seq, emb = A.size()
169
+ res = (A * (mask.unsqueeze(-1))).sum(1) / (mask.sum(1).unsqueeze(-1))
170
+ return res
171
+
172
+ def weighted_embedding(self, A, mask):
173
+ weights = (torch.arange(start=1, end=A.size(1) + 1).unsqueeze(0).unsqueeze(-1).expand(A.size()).float()).to(A.device)
174
+ input_mask_expanded = (mask.squeeze(1).unsqueeze(-1).expand(A.size()).float()).to(A.device)
175
+ sum_embedding = torch.sum(A * input_mask_expanded * weights, dim=1)
176
+ sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
177
+ weighted_embedding = sum_embedding / sum_mask
178
+ return weighted_embedding
179
+
180
+ def pma_embedding(self, A, mask):
181
+ res = self.mha_pma(A, mask).squeeze(1)
182
+ return res
183
+
184
+ def get_sentence_embedding(self, embedding_method, **inputs):
185
+ outputs = self.plm_model(inputs['input_ids'], inputs['attention_mask'], output_hidden_states=True)
186
+ if embedding_method == 'last':
187
+ embedding = outputs.hidden_states[self.keep_max_layer]
188
+ index = inputs['attention_mask'].sum(-1).long() - 1
189
+ res_embedding = self.last_embedding(embedding, index)
190
+ elif embedding_method == 'mean':
191
+ embedding = outputs.hidden_states[self.keep_max_layer]
192
+ res_embedding = self.mean_embedding(embedding, inputs['attention_mask'])
193
+ elif embedding_method == 'weighted':
194
+ embedding = outputs.hidden_states[self.keep_max_layer]
195
+ res_embedding = self.weighted_embedding(embedding, inputs['attention_mask'])
196
+ elif embedding_method == 'pma':
197
+ embedding = outputs.hidden_states[self.keep_max_layer]
198
+ attention_mask = inputs['attention_mask']
199
+ res_embedding = self.pma_embedding(embedding, attention_mask)
200
+ else:
201
+ logger.debug('Error, no {} way to obtain embbedings'.format(embedding_method))
202
+
203
+ if not self.norm:
204
+ res_embedding = torch.nn.functional.normalize(res_embedding, p=2.0, dim=-1, eps=1e-12, out=None)
205
+ return res_embedding
206
+
207
+
208
+ def encode(self, tokenizer, sentences, batch_size=32, convert_to_numpy=True,
209
+ convert_to_tensor=False, show_progress_bar=True, max_seq_length=None, **kwargs):
210
+
211
+ if max_seq_length is None:
212
+ max_seq_length = self.inf_seq_length
213
+
214
+ input_is_string = False
215
+ if isinstance(sentences, str) or not hasattr(sentences, "__len__"):
216
+ sentences = [sentences]
217
+ input_is_string = True
218
+
219
+ all_embeddings = []
220
+ length_sorted_idx = np.argsort([-len(s) for s in sentences])
221
+ sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
222
+ with torch.no_grad():
223
+ for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
224
+ sentences_batch = sentences_sorted[start_index: start_index + batch_size]
225
+ with torch.no_grad():
226
+ inputs = tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_seq_length, add_special_tokens=False, return_tensors='pt').to(self.plm_model.device)
227
+ embeddings = self.get_sentence_embedding(self.embedding_method, **inputs)
228
+ embeddings = embeddings.detach()
229
+ if convert_to_numpy:
230
+ if embeddings.dtype == torch.bfloat16:
231
+ embeddings = embeddings.cpu().to(torch.float32)
232
+ else:
233
+ embeddings = embeddings.cpu()
234
+ all_embeddings.extend(embeddings)
235
+ all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
236
+ if convert_to_tensor:
237
+ all_embeddings = torch.stack(all_embeddings)
238
+ elif convert_to_numpy:
239
+ all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
240
+
241
+ if input_is_string:
242
+ all_embeddings = all_embeddings[0]
243
+ return all_embeddings
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": true,
26
+ "single_word": false,
27
+ "special": false
28
+ },
29
+ "32000": {
30
+ "content": "<|endoftext|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|assistant|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": true,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "<|placeholder1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": true,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "<|placeholder2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": true,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32004": {
62
+ "content": "<|placeholder3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": true,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "32005": {
70
+ "content": "<|placeholder4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": true,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "32006": {
78
+ "content": "<|system|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": true,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "32007": {
86
+ "content": "<|end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": true,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "32008": {
94
+ "content": "<|placeholder5|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": true,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "32009": {
102
+ "content": "<|placeholder6|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": true,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "32010": {
110
+ "content": "<|user|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": true,
114
+ "single_word": false,
115
+ "special": true
116
+ }
117
+ },
118
+ "bos_token": "<s>",
119
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
120
+ "clean_up_tokenization_spaces": false,
121
+ "eos_token": "<|endoftext|>",
122
+ "legacy": false,
123
+ "model_max_length": 131072,
124
+ "pad_token": "<|endoftext|>",
125
+ "padding_side": "left",
126
+ "sp_model_kwargs": {},
127
+ "tokenizer_class": "LlamaTokenizer",
128
+ "unk_token": "<unk>",
129
+ "use_default_system_prompt": false
130
+ }