codefuse-admin commited on
Commit
e00d68b
·
1 Parent(s): 2d54e7d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tasks:
4
+ - code-generation
5
+ ---
6
+ # Model Card for CodeFuse-13B
7
+
8
+ ![logo](LOGO.png)
9
+
10
+
11
+ [[中文]](#chinese) [[English]](#english)
12
+
13
+ <a id="english"></a>
14
+
15
+
16
+ ## Model Description
17
+ CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3).
18
+
19
+
20
+ ## Requirements
21
+ * Python 3.8 or above.
22
+ * PyTorch 1.12 or above, with a recommendation for 2.0 or above.
23
+ * Transformers 4.24.0 or above.
24
+ * It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered).
25
+
26
+
27
+ ## Quickstart
28
+
29
+ ```
30
+ import torch
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B-evol-instruct-4k"))
34
+ model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B-evol-instruct-4k"), device_map="auto").half().eval()
35
+
36
+ input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
37
+ output_ids = model.generate(input_ids, max_new_tokens=200)
38
+
39
+ print(tokenizer.decode(output_ids[0]))
40
+ ```
41
+
42
+ ## MD5
43
+ We notice that the file may be corrupted during transfer process. Please check MD5 value before use.
44
+
45
+ | Model File | MD5 Value |
46
+ |:---------------------------------|:--------------------------------:|
47
+ | pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
48
+ | pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
49
+ | pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
50
+ | pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
51
+ | pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
52
+ | pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |
53
+
54
+ <a id="chinese"></a>
55
+
56
+ ## 简介
57
+ CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。
58
+
59
+
60
+ ## 要求
61
+ * python 3.8及以上版本
62
+ * pytorch 1.12及以上版本,推荐2.0及以上版本
63
+ * transformers 4.24.0及以上版本
64
+ * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选
65
+
66
+
67
+ ## 快速使用
68
+
69
+ ```
70
+ import torch
71
+ from transformers import AutoModelForCausalLM, AutoTokenizer
72
+
73
+ tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B-evol-instruct-4k"))
74
+ model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B-evol-instruct-4k"), device_map="auto").half().eval()
75
+
76
+ input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
77
+ output_ids = model.generate(input_ids, max_new_tokens=200)
78
+
79
+ print(tokenizer.decode(output_ids[0]))
80
+ ```
81
+
82
+ ## MD5
83
+ 我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。
84
+
85
+ | 模型文件 | MD5值 |
86
+ |:---------------------------------|:--------------------------------:|
87
+ | pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
88
+ | pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
89
+ | pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
90
+ | pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
91
+ | pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
92
+ | pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |