codefuse-admin
commited on
Commit
·
e00d68b
1
Parent(s):
2d54e7d
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tasks:
|
4 |
+
- code-generation
|
5 |
+
---
|
6 |
+
# Model Card for CodeFuse-13B
|
7 |
+
|
8 |
+
![logo](LOGO.png)
|
9 |
+
|
10 |
+
|
11 |
+
[[中文]](#chinese) [[English]](#english)
|
12 |
+
|
13 |
+
<a id="english"></a>
|
14 |
+
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3).
|
18 |
+
|
19 |
+
|
20 |
+
## Requirements
|
21 |
+
* Python 3.8 or above.
|
22 |
+
* PyTorch 1.12 or above, with a recommendation for 2.0 or above.
|
23 |
+
* Transformers 4.24.0 or above.
|
24 |
+
* It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered).
|
25 |
+
|
26 |
+
|
27 |
+
## Quickstart
|
28 |
+
|
29 |
+
```
|
30 |
+
import torch
|
31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
32 |
+
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B-evol-instruct-4k"))
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B-evol-instruct-4k"), device_map="auto").half().eval()
|
35 |
+
|
36 |
+
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
|
37 |
+
output_ids = model.generate(input_ids, max_new_tokens=200)
|
38 |
+
|
39 |
+
print(tokenizer.decode(output_ids[0]))
|
40 |
+
```
|
41 |
+
|
42 |
+
## MD5
|
43 |
+
We notice that the file may be corrupted during transfer process. Please check MD5 value before use.
|
44 |
+
|
45 |
+
| Model File | MD5 Value |
|
46 |
+
|:---------------------------------|:--------------------------------:|
|
47 |
+
| pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
|
48 |
+
| pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
|
49 |
+
| pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
|
50 |
+
| pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
|
51 |
+
| pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
|
52 |
+
| pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |
|
53 |
+
|
54 |
+
<a id="chinese"></a>
|
55 |
+
|
56 |
+
## 简介
|
57 |
+
CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。
|
58 |
+
|
59 |
+
|
60 |
+
## 要求
|
61 |
+
* python 3.8及以上版本
|
62 |
+
* pytorch 1.12及以上版本,推荐2.0及以上版本
|
63 |
+
* transformers 4.24.0及以上版本
|
64 |
+
* 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选
|
65 |
+
|
66 |
+
|
67 |
+
## 快速使用
|
68 |
+
|
69 |
+
```
|
70 |
+
import torch
|
71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
+
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B-evol-instruct-4k"))
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B-evol-instruct-4k"), device_map="auto").half().eval()
|
75 |
+
|
76 |
+
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
|
77 |
+
output_ids = model.generate(input_ids, max_new_tokens=200)
|
78 |
+
|
79 |
+
print(tokenizer.decode(output_ids[0]))
|
80 |
+
```
|
81 |
+
|
82 |
+
## MD5
|
83 |
+
我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。
|
84 |
+
|
85 |
+
| 模型文件 | MD5值 |
|
86 |
+
|:---------------------------------|:--------------------------------:|
|
87 |
+
| pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
|
88 |
+
| pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
|
89 |
+
| pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
|
90 |
+
| pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
|
91 |
+
| pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
|
92 |
+
| pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |
|