--- datasets: - Intel/orca_dpo_pairs base_model: - Qwen/Qwen2.5-0.5B-Instruct license: apache-2.0 --- # Fine-tuned Qwen/Qwen2.5-0.5B-Instruct Model ## Model Overview This is a fine-tuned version of the Qwen/Qwen2.5-0.5B-Instruct model. The fine-tuning process utilized the Intel/orca_dpo_pairs dataset and applied DPO (Direct Preference Optimization) and LoRA (Low-Rank Adaptation) techniques. **Note**: This fine-tuning was done following the instructions in [this blog](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac). ## Fine-tuning Details - **Base Model**: Qwen/Qwen2.5-0.5B-Instruct - **Dataset**: Intel/orca_dpo_pairs - **Fine-tuning Method**: DPO + LoRA ## Usage Instructions ### Install Dependencies Before using this model, make sure you have the following dependencies installed: ```bash pip install transformers datasets ``` ### Load the model ```python import transformers from transformers import AutoConfig, AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("drive/MyDrive/result/Qwen-DPO") message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) pipeline = transformers.pipeline( "text-generation", model="co-gy/Qwen-DPO", tokenizer=tokenizer ) sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ```