--- license: cc-by-nc-4.0 --- # Mixtral MOE 2x7B MOE the following models by mergekit: * [rwitz2/go-bruins-v2.1.1](https://huggingface.co/rwitz2/go-bruins-v2.1.1) * [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k) * [meta-math/mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6) Works and generates coherent text. gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_7Bx2_MoE" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ``` CPU example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "cloudyu/Mixtral_7Bx2_MoE" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```