--- base_model: microsoft/wavlm-base tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: wavlm-base_3 results: [] --- # wavlm-base_3 This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6534 - Accuracy: 0.8974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 2 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2236 | 1.24 | 100 | 12.8495 | 0.4467 | | 0.0514 | 2.48 | 200 | 16.3078 | 0.2677 | | 0.0 | 3.72 | 300 | 17.5651 | 0.2597 | | 0.3252 | 4.95 | 400 | 15.0382 | 0.1912 | | 1.0577 | 6.19 | 500 | 0.6534 | 0.8974 | | 0.6973 | 7.43 | 600 | 0.7352 | 0.1026 | | 0.6939 | 8.67 | 700 | 0.6210 | 0.8974 | | 0.6944 | 9.91 | 800 | 0.7129 | 0.1026 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.0.post302 - Datasets 2.14.5 - Tokenizers 0.13.3