--- library_name: peft base_model: saresri/pruned_opt tags: - generated_from_trainer model-index: - name: opt125m-lora-pruned-wanda-4-8 results: [] --- # opt125m-lora-pruned-wanda-4-8 This model is a fine-tuned version of [saresri/pruned_opt](https://huggingface.co/saresri/pruned_opt) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results Evaluation Results (Validation): {'rouge1': 0.2974, 'rouge2': 0.08, 'rougeL': 0.19, 'rougeLsum': 0.2186} Evaluation Results (Test): {'rouge1': 0.3165, 'rouge2': 0.1938, 'rougeL': 0.2721, 'rougeLsum': 0.2794} ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0