You can use transformer library and load model for conditional generation and expect those tokens or use monoT5 implementation from BEIR. prompt = `Query: {query} Document: {document} Relevant:` Model returns tokens if relevant or not: ``` token_false='▁fałsz', token_true='▁prawda'``` MonoT5 implementation is included in BEIR benchmark(https://github.com/beir-cellar/beir): ``` from beir.reranking.models import MonoT5 from beir.reranking import Rerank queries = YOUR_QUERIES corpus = YOUR_CORPUS queries = {query['id'] : query['text'] for query in queries} corpus = {doc['id']: {'title': doc['title'] , 'text': doc['text']} for doc in corpus} cross_encoder_model = MonoT5(model_path, use_amp=False, token_false='▁fałsz', token_true='▁prawda') reranker = Rerank(cross_encoder_model, batch_size=100) rerank_results = reranker.rerank(corpus, queries, results, top_k=100) ```