--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: modernBERT-base-multilingual-sentiment results: [] --- # modernBERT-base-multilingual-sentiment This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5464 - F1: 0.7944 - Precision: 0.7945 - Recall: 0.7944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 2048 - total_eval_batch_size: 1024 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.9287 | 1.0 | 1537 | 0.4626 | 0.7910 | 0.7940 | 0.7897 | | 0.8356 | 2.0 | 3074 | 0.4441 | 0.8011 | 0.8009 | 0.8015 | | 0.7488 | 3.0 | 4611 | 0.4517 | 0.8012 | 0.8020 | 0.8007 | | 0.6177 | 4.0 | 6148 | 0.4915 | 0.7990 | 0.7989 | 0.7991 | | 0.5174 | 5.0 | 7685 | 0.5464 | 0.7944 | 0.7945 | 0.7944 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0