--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_model_1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.44375 --- # emotion_model_1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5356 - Accuracy: 0.4437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0785 | 1.0 | 10 | 2.0617 | 0.125 | | 2.0054 | 2.0 | 20 | 1.9826 | 0.275 | | 1.8694 | 3.0 | 30 | 1.8516 | 0.325 | | 1.7212 | 4.0 | 40 | 1.7082 | 0.3812 | | 1.6101 | 5.0 | 50 | 1.6297 | 0.4375 | | 1.5409 | 6.0 | 60 | 1.5981 | 0.4188 | | 1.4801 | 7.0 | 70 | 1.5526 | 0.4437 | | 1.433 | 8.0 | 80 | 1.5574 | 0.4813 | | 1.4056 | 9.0 | 90 | 1.5094 | 0.5062 | | 1.3797 | 10.0 | 100 | 1.5232 | 0.4688 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1