Upload PoNetForPreTraining (#1)
Browse files- Upload PoNetForPreTraining (ff32cbdcfa90b14ca85c98f2134ccfb29b6ccf40)
- config.json +9 -3
- configuration_ponet.py +149 -0
- modeling_ponet.py +1000 -0
- pytorch_model.bin +2 -2
config.json
CHANGED
|
@@ -1,8 +1,14 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "ponet
|
| 3 |
"architectures": [
|
| 4 |
"PoNetForPreTraining"
|
| 5 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"gradient_checkpointing": false,
|
| 7 |
"hidden_act": "gelu",
|
| 8 |
"hidden_dropout_prob": 0.1,
|
|
@@ -16,9 +22,9 @@
|
|
| 16 |
"num_hidden_layers": 12,
|
| 17 |
"pad_token_id": 0,
|
| 18 |
"position_embedding_type": "absolute",
|
| 19 |
-
"
|
|
|
|
| 20 |
"type_vocab_size": 2,
|
| 21 |
"use_cache": true,
|
| 22 |
-
"clsgsepg": true,
|
| 23 |
"vocab_size": 30522
|
| 24 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "ponet",
|
| 3 |
"architectures": [
|
| 4 |
"PoNetForPreTraining"
|
| 5 |
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_ponet.PoNetConfig",
|
| 8 |
+
"AutoModelForPreTraining": "modeling_ponet.PoNetForPreTraining"
|
| 9 |
+
},
|
| 10 |
+
"classifier_dropout": null,
|
| 11 |
+
"clsgsepg": true,
|
| 12 |
"gradient_checkpointing": false,
|
| 13 |
"hidden_act": "gelu",
|
| 14 |
"hidden_dropout_prob": 0.1,
|
|
|
|
| 22 |
"num_hidden_layers": 12,
|
| 23 |
"pad_token_id": 0,
|
| 24 |
"position_embedding_type": "absolute",
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.28.0.dev0",
|
| 27 |
"type_vocab_size": 2,
|
| 28 |
"use_cache": true,
|
|
|
|
| 29 |
"vocab_size": 30522
|
| 30 |
}
|
configuration_ponet.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" PONET model configuration"""
|
| 17 |
+
from collections import OrderedDict
|
| 18 |
+
from typing import Mapping
|
| 19 |
+
|
| 20 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 21 |
+
from transformers.onnx import OnnxConfig
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
PONET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 28 |
+
"chtan/ponet-base-uncased": "https://huggingface.co/chtan/ponet-base-uncased/resolve/main/config.json",
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class PoNetConfig(PretrainedConfig):
|
| 33 |
+
r"""
|
| 34 |
+
This is the configuration class to store the configuration of a [`PoNetModel`] or a [`TFPoNetModel`]. It is used to
|
| 35 |
+
instantiate a PONET model according to the specified arguments, defining the model architecture. Instantiating a
|
| 36 |
+
configuration with the defaults will yield a similar configuration to that of the PONET
|
| 37 |
+
[chtan/ponet-base-uncased](https://huggingface.co/chtan/ponet-base-uncased) architecture.
|
| 38 |
+
|
| 39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 40 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
| 45 |
+
Vocabulary size of the PONET model. Defines the number of different tokens that can be represented by the
|
| 46 |
+
`inputs_ids` passed when calling [`PoNetModel`] or [`TFPoNetModel`].
|
| 47 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 48 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 50 |
+
Number of hidden layers in the Transformer encoder.
|
| 51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 53 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 54 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 55 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
| 56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 57 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 58 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 60 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
| 61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 63 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 64 |
+
The vocabulary size of the `token_type_ids` passed when calling [`PoNetModel`] or [`TFPoNetModel`].
|
| 65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 68 |
+
The epsilon used by the layer normalization layers.
|
| 69 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
| 70 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
| 71 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
| 72 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
| 73 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
| 74 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
| 75 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
| 76 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
| 77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 79 |
+
relevant if `config.is_decoder=True`.
|
| 80 |
+
classifier_dropout (`float`, *optional*):
|
| 81 |
+
The dropout ratio for the classification head.
|
| 82 |
+
|
| 83 |
+
Examples:
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
>>> from transformers import PoNetConfig, PoNetModel
|
| 87 |
+
|
| 88 |
+
>>> # Initializing a PONET chtan/ponet-base-uncased style configuration
|
| 89 |
+
>>> configuration = PoNetConfig()
|
| 90 |
+
|
| 91 |
+
>>> # Initializing a model (with random weights) from the chtan/ponet-base-uncased style configuration
|
| 92 |
+
>>> model = PoNetModel(configuration)
|
| 93 |
+
|
| 94 |
+
>>> # Accessing the model configuration
|
| 95 |
+
>>> configuration = model.config
|
| 96 |
+
```"""
|
| 97 |
+
model_type = "ponet"
|
| 98 |
+
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
vocab_size=30522,
|
| 102 |
+
hidden_size=768,
|
| 103 |
+
num_hidden_layers=12,
|
| 104 |
+
num_attention_heads=12,
|
| 105 |
+
intermediate_size=3072,
|
| 106 |
+
hidden_act="gelu",
|
| 107 |
+
hidden_dropout_prob=0.1,
|
| 108 |
+
max_position_embeddings=512,
|
| 109 |
+
type_vocab_size=2,
|
| 110 |
+
initializer_range=0.02,
|
| 111 |
+
layer_norm_eps=1e-12,
|
| 112 |
+
pad_token_id=0,
|
| 113 |
+
position_embedding_type="absolute",
|
| 114 |
+
use_cache=True,
|
| 115 |
+
classifier_dropout=None,
|
| 116 |
+
**kwargs,
|
| 117 |
+
):
|
| 118 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 119 |
+
|
| 120 |
+
self.vocab_size = vocab_size
|
| 121 |
+
self.hidden_size = hidden_size
|
| 122 |
+
self.num_hidden_layers = num_hidden_layers
|
| 123 |
+
self.num_attention_heads = num_attention_heads
|
| 124 |
+
self.hidden_act = hidden_act
|
| 125 |
+
self.intermediate_size = intermediate_size
|
| 126 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 127 |
+
self.max_position_embeddings = max_position_embeddings
|
| 128 |
+
self.type_vocab_size = type_vocab_size
|
| 129 |
+
self.initializer_range = initializer_range
|
| 130 |
+
self.layer_norm_eps = layer_norm_eps
|
| 131 |
+
self.position_embedding_type = position_embedding_type
|
| 132 |
+
self.use_cache = use_cache
|
| 133 |
+
self.classifier_dropout = classifier_dropout
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class PoNetOnnxConfig(OnnxConfig):
|
| 137 |
+
@property
|
| 138 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 139 |
+
if self.task == "multiple-choice":
|
| 140 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
| 141 |
+
else:
|
| 142 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
| 143 |
+
return OrderedDict(
|
| 144 |
+
[
|
| 145 |
+
("input_ids", dynamic_axis),
|
| 146 |
+
("attention_mask", dynamic_axis),
|
| 147 |
+
("token_type_ids", dynamic_axis),
|
| 148 |
+
]
|
| 149 |
+
)
|
modeling_ponet.py
ADDED
|
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""PyTorch PONET model."""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import math
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from typing import Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.utils.checkpoint
|
| 25 |
+
from torch import nn
|
| 26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 27 |
+
|
| 28 |
+
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.modeling_outputs import (
|
| 30 |
+
BaseModelOutput,
|
| 31 |
+
BaseModelOutputWithPooling,
|
| 32 |
+
SequenceClassifierOutput,
|
| 33 |
+
)
|
| 34 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 35 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
| 36 |
+
from transformers.utils import (
|
| 37 |
+
ModelOutput,
|
| 38 |
+
add_code_sample_docstrings,
|
| 39 |
+
add_start_docstrings,
|
| 40 |
+
add_start_docstrings_to_model_forward,
|
| 41 |
+
logging,
|
| 42 |
+
replace_return_docstrings,
|
| 43 |
+
)
|
| 44 |
+
from .configuration_ponet import PoNetConfig
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__)
|
| 48 |
+
|
| 49 |
+
_CHECKPOINT_FOR_DOC = "ponet-base"
|
| 50 |
+
_CONFIG_FOR_DOC = "PoNetConfig"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
PONET_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 54 |
+
"chtan/ponet-base-uncased",
|
| 55 |
+
# See all PoNet models at https://huggingface.co/models?filter=ponet
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
# XXX: get from tokenizer
|
| 59 |
+
CLS_ID = 101
|
| 60 |
+
EOS_ID = 102
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def segment_max(src, index, dim=1):
|
| 64 |
+
out = torch.zeros_like(src).scatter_reduce(
|
| 65 |
+
dim, index.unsqueeze(-1).expand_as(src), src, reduce="amax", include_self=False
|
| 66 |
+
)
|
| 67 |
+
dummy = index.unsqueeze(-1).expand(*index.shape[:2], out.size(-1))
|
| 68 |
+
return torch.gather(out, dim, dummy).to(dtype=src.dtype)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_segment_index(input_ids, cls_id=CLS_ID, eos_id=EOS_ID):
|
| 72 |
+
mask = (input_ids == cls_id).to(dtype=torch.long) + (input_ids == eos_id).to(dtype=torch.long)
|
| 73 |
+
mask = mask + torch.cat([torch.zeros_like(mask[:, 0:1]), mask[:, :-1]], dim=1)
|
| 74 |
+
num_segments = input_ids[:, :1] == cls_id
|
| 75 |
+
segment_idx = mask.cumsum(dim=1)
|
| 76 |
+
return torch.where(num_segments == 0, segment_idx, segment_idx - 1)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def get_token_type_mask(input_ids, cls_id=CLS_ID, eos_id=EOS_ID):
|
| 80 |
+
mask = (input_ids == cls_id) | (input_ids == eos_id)
|
| 81 |
+
return mask
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_win_max(hidden_states, kernel_size=3):
|
| 85 |
+
m = nn.MaxPool1d(kernel_size, stride=1, padding=kernel_size // 2)
|
| 86 |
+
out = m(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
|
| 87 |
+
return out
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->PoNet
|
| 91 |
+
class PoNetEmbeddings(nn.Module):
|
| 92 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
| 93 |
+
|
| 94 |
+
def __init__(self, config):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 97 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 98 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 99 |
+
|
| 100 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 101 |
+
# any TensorFlow checkpoint file
|
| 102 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 103 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 104 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 105 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 106 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 107 |
+
self.register_buffer(
|
| 108 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
def forward(
|
| 112 |
+
self,
|
| 113 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 114 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 115 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 116 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 117 |
+
past_key_values_length: int = 0,
|
| 118 |
+
) -> torch.Tensor:
|
| 119 |
+
if input_ids is not None:
|
| 120 |
+
input_shape = input_ids.size()
|
| 121 |
+
else:
|
| 122 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 123 |
+
|
| 124 |
+
seq_length = input_shape[1]
|
| 125 |
+
|
| 126 |
+
if position_ids is None:
|
| 127 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
| 128 |
+
|
| 129 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 130 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 131 |
+
# issue #5664
|
| 132 |
+
if token_type_ids is None:
|
| 133 |
+
if hasattr(self, "token_type_ids"):
|
| 134 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 135 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
| 136 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 137 |
+
else:
|
| 138 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 139 |
+
|
| 140 |
+
if inputs_embeds is None:
|
| 141 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 142 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 143 |
+
|
| 144 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 145 |
+
if self.position_embedding_type == "absolute":
|
| 146 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 147 |
+
embeddings += position_embeddings
|
| 148 |
+
embeddings = self.LayerNorm(embeddings)
|
| 149 |
+
embeddings = self.dropout(embeddings)
|
| 150 |
+
return embeddings
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class PoNetSelfAttention(nn.Module):
|
| 154 |
+
def __init__(self, config):
|
| 155 |
+
super().__init__()
|
| 156 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 157 |
+
raise ValueError(
|
| 158 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 159 |
+
f"heads ({config.num_attention_heads})"
|
| 160 |
+
)
|
| 161 |
+
self.clsgsepg = getattr(config, "clsgsepg", True)
|
| 162 |
+
|
| 163 |
+
self.num_attention_heads = config.num_attention_heads
|
| 164 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 165 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 166 |
+
|
| 167 |
+
self.dense_local = nn.Linear(config.hidden_size, config.hidden_size)
|
| 168 |
+
self.dense_segment = nn.Linear(config.hidden_size, config.hidden_size)
|
| 169 |
+
|
| 170 |
+
self.dense_q = nn.Linear(config.hidden_size, self.all_head_size)
|
| 171 |
+
self.dense_k = nn.Linear(config.hidden_size, self.all_head_size)
|
| 172 |
+
self.dense_o = nn.Linear(config.hidden_size, self.all_head_size)
|
| 173 |
+
|
| 174 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 175 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 176 |
+
x = x.view(new_x_shape)
|
| 177 |
+
return x.permute(0, 2, 1, 3)
|
| 178 |
+
|
| 179 |
+
def forward(
|
| 180 |
+
self,
|
| 181 |
+
hidden_states: torch.Tensor,
|
| 182 |
+
segment_index: torch.LongTensor,
|
| 183 |
+
token_type_mask: torch.LongTensor,
|
| 184 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 185 |
+
output_attentions: Optional[bool] = False,
|
| 186 |
+
) -> Tuple[torch.Tensor]:
|
| 187 |
+
context_layer_q = self.transpose_for_scores(self.dense_q(hidden_states))
|
| 188 |
+
context_layer_k = self.transpose_for_scores(self.dense_k(hidden_states))
|
| 189 |
+
context_layer_v = context_layer_k
|
| 190 |
+
context_layer_o = self.transpose_for_scores(self.dense_o(hidden_states))
|
| 191 |
+
|
| 192 |
+
if attention_mask is not None:
|
| 193 |
+
_attention_mask = attention_mask.squeeze(1).unsqueeze(-1) < -1
|
| 194 |
+
|
| 195 |
+
if attention_mask is not None:
|
| 196 |
+
context_layer_q.masked_fill_(_attention_mask, 0.0)
|
| 197 |
+
q = context_layer_q.sum(dim=-2) / torch.ones_like(_attention_mask).to(
|
| 198 |
+
dtype=context_layer_q.dtype
|
| 199 |
+
).masked_fill(_attention_mask, 0.0).sum(dim=-2)
|
| 200 |
+
else:
|
| 201 |
+
q = context_layer_q.mean(dim=-2)
|
| 202 |
+
att = torch.einsum("bdh,bdlh -> bdl", q, context_layer_k) / math.sqrt(context_layer_q.shape[-1])
|
| 203 |
+
if attention_mask is not None:
|
| 204 |
+
att = att + attention_mask.squeeze(1)
|
| 205 |
+
att_prob = att.softmax(dim=-1)
|
| 206 |
+
v = torch.einsum("bdlh,bdl->bdh", context_layer_v, att_prob)
|
| 207 |
+
|
| 208 |
+
context_layer_segment = self.dense_segment(hidden_states)
|
| 209 |
+
context_layer_local = self.dense_local(hidden_states)
|
| 210 |
+
if attention_mask is not None:
|
| 211 |
+
context_layer_local.masked_fill_(_attention_mask.squeeze(1), -10000)
|
| 212 |
+
context_layer_segment.masked_fill_(_attention_mask.squeeze(1), -10000)
|
| 213 |
+
|
| 214 |
+
if self.clsgsepg:
|
| 215 |
+
# XXX: a trick to make sure the segment and local information will not leak
|
| 216 |
+
context_layer_local = get_win_max(
|
| 217 |
+
context_layer_local.masked_fill(token_type_mask.unsqueeze(dim=-1), -10000)
|
| 218 |
+
)
|
| 219 |
+
context_layer_segment = segment_max(context_layer_segment, index=segment_index)
|
| 220 |
+
|
| 221 |
+
context_layer_segment.masked_fill_(token_type_mask.unsqueeze(dim=-1), 0.0)
|
| 222 |
+
context_layer_local.masked_fill_(token_type_mask.unsqueeze(dim=-1), 0.0)
|
| 223 |
+
else:
|
| 224 |
+
context_layer_local = get_win_max(context_layer_local)
|
| 225 |
+
context_layer_segment = segment_max(context_layer_segment, index=segment_index)
|
| 226 |
+
|
| 227 |
+
context_layer_local = self.transpose_for_scores(context_layer_local)
|
| 228 |
+
context_layer_segment = self.transpose_for_scores(context_layer_segment)
|
| 229 |
+
|
| 230 |
+
context_layer = (v.unsqueeze(dim=-2) + context_layer_segment) * context_layer_o + context_layer_local
|
| 231 |
+
context_layer = context_layer.permute(0, 2, 1, 3).reshape(*hidden_states.shape[:2], -1)
|
| 232 |
+
|
| 233 |
+
if attention_mask is not None:
|
| 234 |
+
context_layer.masked_fill_(_attention_mask.squeeze(1), 0.0)
|
| 235 |
+
|
| 236 |
+
outputs = (context_layer, att_prob) if output_attentions else (context_layer,)
|
| 237 |
+
return outputs
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->PoNet
|
| 241 |
+
class PoNetSelfOutput(nn.Module):
|
| 242 |
+
def __init__(self, config):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 245 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 246 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 247 |
+
|
| 248 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 249 |
+
hidden_states = self.dense(hidden_states)
|
| 250 |
+
hidden_states = self.dropout(hidden_states)
|
| 251 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 252 |
+
return hidden_states
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
class PoNetAttention(nn.Module):
|
| 256 |
+
def __init__(self, config):
|
| 257 |
+
super().__init__()
|
| 258 |
+
self.self = PoNetSelfAttention(config)
|
| 259 |
+
self.output = PoNetSelfOutput(config)
|
| 260 |
+
self.pruned_heads = set()
|
| 261 |
+
|
| 262 |
+
def prune_heads(self, heads):
|
| 263 |
+
if len(heads) == 0:
|
| 264 |
+
return
|
| 265 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 266 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
# Prune linear layers
|
| 270 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 271 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 272 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 273 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 274 |
+
|
| 275 |
+
# Update hyper params and store pruned heads
|
| 276 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 277 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
| 278 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 279 |
+
|
| 280 |
+
def forward(
|
| 281 |
+
self,
|
| 282 |
+
hidden_states: torch.Tensor,
|
| 283 |
+
segment_index: torch.LongTensor,
|
| 284 |
+
token_type_mask: torch.LongTensor,
|
| 285 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 286 |
+
output_attentions: Optional[bool] = False,
|
| 287 |
+
) -> Tuple[torch.Tensor]:
|
| 288 |
+
self_outputs = self.self(
|
| 289 |
+
hidden_states,
|
| 290 |
+
segment_index,
|
| 291 |
+
token_type_mask,
|
| 292 |
+
attention_mask,
|
| 293 |
+
output_attentions,
|
| 294 |
+
)
|
| 295 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 296 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 297 |
+
return outputs
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->PoNet
|
| 301 |
+
class PoNetIntermediate(nn.Module):
|
| 302 |
+
def __init__(self, config):
|
| 303 |
+
super().__init__()
|
| 304 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 305 |
+
if isinstance(config.hidden_act, str):
|
| 306 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 307 |
+
else:
|
| 308 |
+
self.intermediate_act_fn = config.hidden_act
|
| 309 |
+
|
| 310 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 311 |
+
hidden_states = self.dense(hidden_states)
|
| 312 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 313 |
+
return hidden_states
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->PoNet
|
| 317 |
+
class PoNetOutput(nn.Module):
|
| 318 |
+
def __init__(self, config):
|
| 319 |
+
super().__init__()
|
| 320 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 321 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 322 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 323 |
+
|
| 324 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 325 |
+
hidden_states = self.dense(hidden_states)
|
| 326 |
+
hidden_states = self.dropout(hidden_states)
|
| 327 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 328 |
+
return hidden_states
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class PoNetLayer(nn.Module):
|
| 332 |
+
def __init__(self, config):
|
| 333 |
+
super().__init__()
|
| 334 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 335 |
+
self.seq_len_dim = 1
|
| 336 |
+
self.attention = PoNetAttention(config)
|
| 337 |
+
|
| 338 |
+
config.is_decoder = False # XXX: Decoder is not yet impletemented.
|
| 339 |
+
self.is_decoder = config.is_decoder
|
| 340 |
+
|
| 341 |
+
self.intermediate = PoNetIntermediate(config)
|
| 342 |
+
self.output = PoNetOutput(config)
|
| 343 |
+
|
| 344 |
+
def forward(
|
| 345 |
+
self,
|
| 346 |
+
hidden_states: torch.Tensor,
|
| 347 |
+
segment_index: torch.LongTensor,
|
| 348 |
+
token_type_mask: torch.LongTensor,
|
| 349 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 350 |
+
output_attentions: Optional[bool] = False,
|
| 351 |
+
) -> Tuple[torch.Tensor]:
|
| 352 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 353 |
+
self_attention_outputs = self.attention(
|
| 354 |
+
hidden_states,
|
| 355 |
+
segment_index,
|
| 356 |
+
token_type_mask,
|
| 357 |
+
attention_mask,
|
| 358 |
+
output_attentions=output_attentions,
|
| 359 |
+
)
|
| 360 |
+
attention_output = self_attention_outputs[0]
|
| 361 |
+
|
| 362 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 363 |
+
|
| 364 |
+
layer_output = apply_chunking_to_forward(
|
| 365 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
| 366 |
+
)
|
| 367 |
+
outputs = (layer_output,) + outputs
|
| 368 |
+
|
| 369 |
+
return outputs
|
| 370 |
+
|
| 371 |
+
def feed_forward_chunk(self, attention_output):
|
| 372 |
+
intermediate_output = self.intermediate(attention_output)
|
| 373 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 374 |
+
return layer_output
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class PoNetEncoder(nn.Module):
|
| 378 |
+
def __init__(self, config):
|
| 379 |
+
super().__init__()
|
| 380 |
+
self.config = config
|
| 381 |
+
self.layer = nn.ModuleList([PoNetLayer(config) for _ in range(config.num_hidden_layers)])
|
| 382 |
+
self.gradient_checkpointing = False
|
| 383 |
+
|
| 384 |
+
def forward(
|
| 385 |
+
self,
|
| 386 |
+
hidden_states: torch.Tensor,
|
| 387 |
+
segment_index: torch.LongTensor,
|
| 388 |
+
token_type_mask: torch.LongTensor,
|
| 389 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 390 |
+
output_attentions: Optional[bool] = False,
|
| 391 |
+
output_hidden_states: Optional[bool] = False,
|
| 392 |
+
return_dict: Optional[bool] = True,
|
| 393 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 394 |
+
all_hidden_states = () if output_hidden_states else None
|
| 395 |
+
all_self_attentions = () if output_attentions else None
|
| 396 |
+
|
| 397 |
+
for i, layer_module in enumerate(self.layer):
|
| 398 |
+
if output_hidden_states:
|
| 399 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 400 |
+
|
| 401 |
+
if self.gradient_checkpointing and self.training:
|
| 402 |
+
|
| 403 |
+
def create_custom_forward(module):
|
| 404 |
+
def custom_forward(*inputs):
|
| 405 |
+
return module(*inputs, output_attentions)
|
| 406 |
+
|
| 407 |
+
return custom_forward
|
| 408 |
+
|
| 409 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 410 |
+
create_custom_forward(layer_module),
|
| 411 |
+
hidden_states,
|
| 412 |
+
segment_index,
|
| 413 |
+
token_type_mask,
|
| 414 |
+
attention_mask,
|
| 415 |
+
)
|
| 416 |
+
else:
|
| 417 |
+
layer_outputs = layer_module(
|
| 418 |
+
hidden_states,
|
| 419 |
+
segment_index,
|
| 420 |
+
token_type_mask,
|
| 421 |
+
attention_mask,
|
| 422 |
+
output_attentions,
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
hidden_states = layer_outputs[0]
|
| 426 |
+
if output_attentions:
|
| 427 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 428 |
+
|
| 429 |
+
if output_hidden_states:
|
| 430 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 431 |
+
|
| 432 |
+
if not return_dict:
|
| 433 |
+
return tuple(
|
| 434 |
+
v
|
| 435 |
+
for v in [
|
| 436 |
+
hidden_states,
|
| 437 |
+
all_hidden_states,
|
| 438 |
+
all_self_attentions,
|
| 439 |
+
]
|
| 440 |
+
if v is not None
|
| 441 |
+
)
|
| 442 |
+
return BaseModelOutput(
|
| 443 |
+
last_hidden_state=hidden_states,
|
| 444 |
+
hidden_states=all_hidden_states,
|
| 445 |
+
attentions=all_self_attentions,
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->PoNet
|
| 450 |
+
class PoNetPooler(nn.Module):
|
| 451 |
+
def __init__(self, config):
|
| 452 |
+
super().__init__()
|
| 453 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 454 |
+
self.activation = nn.Tanh()
|
| 455 |
+
|
| 456 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 457 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 458 |
+
# to the first token.
|
| 459 |
+
first_token_tensor = hidden_states[:, 0]
|
| 460 |
+
pooled_output = self.dense(first_token_tensor)
|
| 461 |
+
pooled_output = self.activation(pooled_output)
|
| 462 |
+
return pooled_output
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->PoNet
|
| 466 |
+
class PoNetPredictionHeadTransform(nn.Module):
|
| 467 |
+
def __init__(self, config):
|
| 468 |
+
super().__init__()
|
| 469 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 470 |
+
if isinstance(config.hidden_act, str):
|
| 471 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 472 |
+
else:
|
| 473 |
+
self.transform_act_fn = config.hidden_act
|
| 474 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 475 |
+
|
| 476 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 477 |
+
hidden_states = self.dense(hidden_states)
|
| 478 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 479 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 480 |
+
return hidden_states
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->PoNet
|
| 484 |
+
class PoNetLMPredictionHead(nn.Module):
|
| 485 |
+
def __init__(self, config):
|
| 486 |
+
super().__init__()
|
| 487 |
+
self.transform = PoNetPredictionHeadTransform(config)
|
| 488 |
+
|
| 489 |
+
# The output weights are the same as the input embeddings, but there is
|
| 490 |
+
# an output-only bias for each token.
|
| 491 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 492 |
+
|
| 493 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 494 |
+
|
| 495 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
| 496 |
+
self.decoder.bias = self.bias
|
| 497 |
+
|
| 498 |
+
def forward(self, hidden_states):
|
| 499 |
+
hidden_states = self.transform(hidden_states)
|
| 500 |
+
hidden_states = self.decoder(hidden_states)
|
| 501 |
+
return hidden_states
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->PoNet
|
| 505 |
+
class PoNetOnlyMLMHead(nn.Module):
|
| 506 |
+
def __init__(self, config):
|
| 507 |
+
super().__init__()
|
| 508 |
+
self.predictions = PoNetLMPredictionHead(config)
|
| 509 |
+
|
| 510 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
| 511 |
+
prediction_scores = self.predictions(sequence_output)
|
| 512 |
+
return prediction_scores
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->PoNet
|
| 516 |
+
class PoNetOnlyNSPHead(nn.Module):
|
| 517 |
+
def __init__(self, config):
|
| 518 |
+
super().__init__()
|
| 519 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 520 |
+
|
| 521 |
+
def forward(self, pooled_output):
|
| 522 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 523 |
+
return seq_relationship_score
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
class PoNetOnlySSOHead(nn.Module):
|
| 527 |
+
def __init__(self, config):
|
| 528 |
+
super().__init__()
|
| 529 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 3)
|
| 530 |
+
|
| 531 |
+
def forward(self, pooled_output):
|
| 532 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 533 |
+
return seq_relationship_score
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class PoNetPreTrainingHeads(nn.Module):
|
| 537 |
+
def __init__(self, config):
|
| 538 |
+
super().__init__()
|
| 539 |
+
self.predictions = PoNetLMPredictionHead(config)
|
| 540 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 3) # 3 classes: sentence structural objective (SSO)
|
| 541 |
+
|
| 542 |
+
def forward(self, sequence_output, pooled_output):
|
| 543 |
+
prediction_scores = self.predictions(sequence_output)
|
| 544 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 545 |
+
return prediction_scores, seq_relationship_score
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class PoNetPreTrainedModel(PreTrainedModel):
|
| 549 |
+
"""
|
| 550 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 551 |
+
models.
|
| 552 |
+
"""
|
| 553 |
+
|
| 554 |
+
config_class = PoNetConfig
|
| 555 |
+
base_model_prefix = "ponet"
|
| 556 |
+
supports_gradient_checkpointing = True
|
| 557 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 558 |
+
|
| 559 |
+
def _init_weights(self, module):
|
| 560 |
+
"""Initialize the weights"""
|
| 561 |
+
if isinstance(module, nn.Linear):
|
| 562 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 563 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 564 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 565 |
+
if module.bias is not None:
|
| 566 |
+
module.bias.data.zero_()
|
| 567 |
+
elif isinstance(module, nn.Embedding):
|
| 568 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 569 |
+
if module.padding_idx is not None:
|
| 570 |
+
module.weight.data[module.padding_idx].zero_()
|
| 571 |
+
elif isinstance(module, nn.LayerNorm):
|
| 572 |
+
module.bias.data.zero_()
|
| 573 |
+
module.weight.data.fill_(1.0)
|
| 574 |
+
|
| 575 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 576 |
+
if isinstance(module, PoNetEncoder):
|
| 577 |
+
module.gradient_checkpointing = value
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
@dataclass
|
| 581 |
+
class PoNetForPreTrainingOutput(ModelOutput):
|
| 582 |
+
"""
|
| 583 |
+
Output type of [*PoNetForPreTraining*].
|
| 584 |
+
|
| 585 |
+
Args:
|
| 586 |
+
loss (*optional*, returned when *labels* is provided, *torch.FloatTensor* of shape *(1,)*):
|
| 587 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
| 588 |
+
(classification) loss.
|
| 589 |
+
mlm_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
| 590 |
+
Masked language modeling loss.
|
| 591 |
+
sso_loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
| 592 |
+
sso loss.
|
| 593 |
+
prediction_logits (*torch.FloatTensor* of shape *(batch_size, sequence_length, config.vocab_size)*):
|
| 594 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 595 |
+
seq_relationship_logits (*torch.FloatTensor* of shape *(batch_size, 3)*):
|
| 596 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
| 597 |
+
before SoftMax).
|
| 598 |
+
hidden_states (*tuple(torch.FloatTensor)*, *optional*, returned when *output_hidden_states=True* is passed or when *config.output_hidden_states=True*):
|
| 599 |
+
Tuple of *torch.FloatTensor* (one for the output of the embeddings + one for the output of each layer) of
|
| 600 |
+
shape *(batch_size, sequence_length, hidden_size)*.
|
| 601 |
+
|
| 602 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 603 |
+
attentions (*tuple(torch.FloatTensor)*, *optional*, returned when *output_attentions=True* is passed or when *config.output_attentions=True*):
|
| 604 |
+
Tuple of *torch.FloatTensor* (one for each layer) of shape *(batch_size, num_heads, sequence_length,
|
| 605 |
+
sequence_length)*.
|
| 606 |
+
|
| 607 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 608 |
+
heads.
|
| 609 |
+
"""
|
| 610 |
+
|
| 611 |
+
loss: Optional[torch.FloatTensor] = None
|
| 612 |
+
mlm_loss: Optional[torch.FloatTensor] = None
|
| 613 |
+
sso_loss: Optional[torch.FloatTensor] = None
|
| 614 |
+
prediction_logits: torch.FloatTensor = None
|
| 615 |
+
seq_relationship_logits: torch.FloatTensor = None
|
| 616 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 617 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
PONET_START_DOCSTRING = r"""
|
| 621 |
+
|
| 622 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 623 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 624 |
+
etc.)
|
| 625 |
+
|
| 626 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 627 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 628 |
+
and behavior.
|
| 629 |
+
|
| 630 |
+
Parameters:
|
| 631 |
+
config ([`PoNetConfig`]): Model configuration class with all the parameters of the model.
|
| 632 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 633 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 634 |
+
"""
|
| 635 |
+
|
| 636 |
+
PONET_INPUTS_DOCSTRING = r"""
|
| 637 |
+
Args:
|
| 638 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 639 |
+
Indices of input sequence tokens in the vocabulary.
|
| 640 |
+
|
| 641 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 642 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 643 |
+
|
| 644 |
+
[What are input IDs?](../glossary#input-ids)
|
| 645 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 646 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 647 |
+
|
| 648 |
+
- 1 for tokens that are **not masked**,
|
| 649 |
+
- 0 for tokens that are **masked**.
|
| 650 |
+
|
| 651 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 652 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 653 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 654 |
+
1]`:
|
| 655 |
+
|
| 656 |
+
- 0 corresponds to a *sentence A* token,
|
| 657 |
+
- 1 corresponds to a *sentence B* token.
|
| 658 |
+
|
| 659 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 660 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 661 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 662 |
+
config.max_position_embeddings - 1]`.
|
| 663 |
+
|
| 664 |
+
[What are position IDs?](../glossary#position-ids)
|
| 665 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 666 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 667 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 668 |
+
model's internal embedding lookup matrix.
|
| 669 |
+
output_attentions (`bool`, *optional*):
|
| 670 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 671 |
+
tensors for more detail.
|
| 672 |
+
output_hidden_states (`bool`, *optional*):
|
| 673 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 674 |
+
more detail.
|
| 675 |
+
return_dict (`bool`, *optional*):
|
| 676 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 677 |
+
"""
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
@add_start_docstrings(
|
| 681 |
+
"The bare PoNet Model transformer outputting raw hidden-states without any specific head on top.",
|
| 682 |
+
PONET_START_DOCSTRING,
|
| 683 |
+
)
|
| 684 |
+
class PoNetModel(PoNetPreTrainedModel):
|
| 685 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 686 |
+
super().__init__(config)
|
| 687 |
+
self.config = config
|
| 688 |
+
|
| 689 |
+
self.embeddings = PoNetEmbeddings(config)
|
| 690 |
+
self.encoder = PoNetEncoder(config)
|
| 691 |
+
|
| 692 |
+
self.pooler = PoNetPooler(config) if add_pooling_layer else None
|
| 693 |
+
|
| 694 |
+
# Initialize weights and apply final processing
|
| 695 |
+
self.post_init()
|
| 696 |
+
|
| 697 |
+
def get_input_embeddings(self):
|
| 698 |
+
return self.embeddings.word_embeddings
|
| 699 |
+
|
| 700 |
+
def set_input_embeddings(self, value):
|
| 701 |
+
self.embeddings.word_embeddings = value
|
| 702 |
+
|
| 703 |
+
def _prune_heads(self, heads_to_prune):
|
| 704 |
+
"""
|
| 705 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 706 |
+
class PreTrainedModel
|
| 707 |
+
"""
|
| 708 |
+
for layer, heads in heads_to_prune.items():
|
| 709 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 710 |
+
|
| 711 |
+
@add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 712 |
+
@add_code_sample_docstrings(
|
| 713 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 714 |
+
output_type=BaseModelOutputWithPooling,
|
| 715 |
+
config_class=_CONFIG_FOR_DOC,
|
| 716 |
+
)
|
| 717 |
+
def forward(
|
| 718 |
+
self,
|
| 719 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 721 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 722 |
+
segment_ids: Optional[torch.Tensor] = None,
|
| 723 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 724 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 725 |
+
output_attentions: Optional[bool] = None,
|
| 726 |
+
output_hidden_states: Optional[bool] = None,
|
| 727 |
+
return_dict: Optional[bool] = None,
|
| 728 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
| 729 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 730 |
+
output_hidden_states = (
|
| 731 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 732 |
+
)
|
| 733 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 734 |
+
|
| 735 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 736 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 737 |
+
elif input_ids is not None:
|
| 738 |
+
input_shape = input_ids.size()
|
| 739 |
+
elif inputs_embeds is not None:
|
| 740 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 741 |
+
else:
|
| 742 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 743 |
+
|
| 744 |
+
batch_size, seq_length = input_shape
|
| 745 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 746 |
+
|
| 747 |
+
if attention_mask is None:
|
| 748 |
+
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
| 749 |
+
|
| 750 |
+
if token_type_ids is None:
|
| 751 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 752 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 753 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
| 754 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 755 |
+
else:
|
| 756 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 757 |
+
|
| 758 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 759 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 760 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 761 |
+
|
| 762 |
+
embedding_output = self.embeddings(
|
| 763 |
+
input_ids=input_ids,
|
| 764 |
+
position_ids=position_ids,
|
| 765 |
+
token_type_ids=token_type_ids,
|
| 766 |
+
inputs_embeds=inputs_embeds,
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
segment_index = get_segment_index(input_ids) if segment_ids is None else segment_ids
|
| 770 |
+
token_type_mask = get_token_type_mask(input_ids)
|
| 771 |
+
encoder_outputs = self.encoder(
|
| 772 |
+
embedding_output,
|
| 773 |
+
segment_index,
|
| 774 |
+
token_type_mask,
|
| 775 |
+
attention_mask=extended_attention_mask,
|
| 776 |
+
output_attentions=output_attentions,
|
| 777 |
+
output_hidden_states=output_hidden_states,
|
| 778 |
+
return_dict=return_dict,
|
| 779 |
+
)
|
| 780 |
+
sequence_output = encoder_outputs[0]
|
| 781 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 782 |
+
|
| 783 |
+
if not return_dict:
|
| 784 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 785 |
+
|
| 786 |
+
return BaseModelOutputWithPooling(
|
| 787 |
+
last_hidden_state=sequence_output,
|
| 788 |
+
pooler_output=pooled_output,
|
| 789 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 790 |
+
attentions=encoder_outputs.attentions,
|
| 791 |
+
)
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
@add_start_docstrings(
|
| 795 |
+
"""
|
| 796 |
+
PoNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
| 797 |
+
sentence prediction (classification)` head.
|
| 798 |
+
""",
|
| 799 |
+
PONET_START_DOCSTRING,
|
| 800 |
+
)
|
| 801 |
+
class PoNetForPreTraining(PoNetPreTrainedModel):
|
| 802 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"cls.predictions.decoder.bias"]
|
| 803 |
+
|
| 804 |
+
def __init__(self, config):
|
| 805 |
+
super().__init__(config)
|
| 806 |
+
|
| 807 |
+
self.ponet = PoNetModel(config)
|
| 808 |
+
self.cls = PoNetPreTrainingHeads(config)
|
| 809 |
+
|
| 810 |
+
# Initialize weights and apply final processing
|
| 811 |
+
self.post_init()
|
| 812 |
+
|
| 813 |
+
@add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 814 |
+
@replace_return_docstrings(output_type=PoNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
| 815 |
+
def forward(
|
| 816 |
+
self,
|
| 817 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 818 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 819 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 820 |
+
segment_ids: Optional[torch.Tensor] = None,
|
| 821 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 822 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 823 |
+
labels: Optional[torch.Tensor] = None,
|
| 824 |
+
sentence_structural_label: Optional[torch.Tensor] = None,
|
| 825 |
+
output_attentions: Optional[bool] = None,
|
| 826 |
+
output_hidden_states: Optional[bool] = None,
|
| 827 |
+
return_dict: Optional[bool] = None,
|
| 828 |
+
) -> Union[Tuple[torch.Tensor], PoNetForPreTrainingOutput]:
|
| 829 |
+
r"""
|
| 830 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 831 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 832 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
| 833 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 834 |
+
sentence_structural_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 835 |
+
Labels for computing the sentence structural objective (classification) loss. Input should be a
|
| 836 |
+
sequence pair (see `input_ids` docstring) Indices should be in `[0, 1, 2]`:
|
| 837 |
+
|
| 838 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
| 839 |
+
- 1 indicates sequence A is a continuation of sequence B,
|
| 840 |
+
- 2 indicates sequence B is a random sequence.
|
| 841 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 842 |
+
Used to hide legacy arguments that have been deprecated.
|
| 843 |
+
|
| 844 |
+
Returns:
|
| 845 |
+
|
| 846 |
+
Example:
|
| 847 |
+
|
| 848 |
+
```python
|
| 849 |
+
>>> from transformers import AutoTokenizer, PoNetForPreTraining
|
| 850 |
+
>>> import torch
|
| 851 |
+
|
| 852 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("ponet-base")
|
| 853 |
+
>>> model = PoNetForPreTraining.from_pretrained("ponet-base")
|
| 854 |
+
|
| 855 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 856 |
+
>>> outputs = model(**inputs)
|
| 857 |
+
|
| 858 |
+
>>> prediction_logits = outputs.prediction_logits
|
| 859 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
| 860 |
+
```
|
| 861 |
+
"""
|
| 862 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 863 |
+
|
| 864 |
+
outputs = self.ponet(
|
| 865 |
+
input_ids,
|
| 866 |
+
attention_mask=attention_mask,
|
| 867 |
+
token_type_ids=token_type_ids,
|
| 868 |
+
segment_ids=segment_ids,
|
| 869 |
+
position_ids=position_ids,
|
| 870 |
+
inputs_embeds=inputs_embeds,
|
| 871 |
+
output_attentions=output_attentions,
|
| 872 |
+
output_hidden_states=output_hidden_states,
|
| 873 |
+
return_dict=return_dict,
|
| 874 |
+
)
|
| 875 |
+
|
| 876 |
+
sequence_output, pooled_output = outputs[:2]
|
| 877 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
| 878 |
+
|
| 879 |
+
total_loss = None
|
| 880 |
+
masked_lm_loss = None
|
| 881 |
+
sso_loss = None
|
| 882 |
+
if labels is not None and sentence_structural_label is not None:
|
| 883 |
+
loss_fct = CrossEntropyLoss()
|
| 884 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 885 |
+
sso_loss = loss_fct(seq_relationship_score.view(-1, 3), sentence_structural_label.view(-1))
|
| 886 |
+
total_loss = masked_lm_loss + sso_loss
|
| 887 |
+
|
| 888 |
+
if not return_dict:
|
| 889 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
| 890 |
+
return ((total_loss, masked_lm_loss, sso_loss) + output) if total_loss is not None else output
|
| 891 |
+
|
| 892 |
+
return PoNetForPreTrainingOutput(
|
| 893 |
+
loss=total_loss,
|
| 894 |
+
mlm_loss=masked_lm_loss,
|
| 895 |
+
sso_loss=sso_loss,
|
| 896 |
+
prediction_logits=prediction_scores,
|
| 897 |
+
seq_relationship_logits=seq_relationship_score,
|
| 898 |
+
hidden_states=outputs.hidden_states,
|
| 899 |
+
attentions=outputs.attentions,
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
|
| 903 |
+
@add_start_docstrings(
|
| 904 |
+
"""
|
| 905 |
+
PoNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
| 906 |
+
output) e.g. for GLUE tasks.
|
| 907 |
+
""",
|
| 908 |
+
PONET_START_DOCSTRING,
|
| 909 |
+
)
|
| 910 |
+
class PoNetForSequenceClassification(PoNetPreTrainedModel):
|
| 911 |
+
def __init__(self, config):
|
| 912 |
+
super().__init__(config)
|
| 913 |
+
self.num_labels = config.num_labels
|
| 914 |
+
self.config = config
|
| 915 |
+
|
| 916 |
+
self.ponet = PoNetModel(config)
|
| 917 |
+
classifier_dropout = (
|
| 918 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 919 |
+
)
|
| 920 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 921 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 922 |
+
|
| 923 |
+
# Initialize weights and apply final processing
|
| 924 |
+
self.post_init()
|
| 925 |
+
|
| 926 |
+
@add_start_docstrings_to_model_forward(PONET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 927 |
+
@add_code_sample_docstrings(
|
| 928 |
+
output_type=SequenceClassifierOutput,
|
| 929 |
+
config_class=_CONFIG_FOR_DOC,
|
| 930 |
+
)
|
| 931 |
+
def forward(
|
| 932 |
+
self,
|
| 933 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 934 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 935 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 936 |
+
segment_ids: Optional[torch.Tensor] = None,
|
| 937 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 938 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 939 |
+
labels: Optional[torch.Tensor] = None,
|
| 940 |
+
output_attentions: Optional[bool] = None,
|
| 941 |
+
output_hidden_states: Optional[bool] = None,
|
| 942 |
+
return_dict: Optional[bool] = None,
|
| 943 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 944 |
+
r"""
|
| 945 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 946 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 947 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 948 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 949 |
+
"""
|
| 950 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 951 |
+
|
| 952 |
+
outputs = self.ponet(
|
| 953 |
+
input_ids,
|
| 954 |
+
attention_mask=attention_mask,
|
| 955 |
+
token_type_ids=token_type_ids,
|
| 956 |
+
segment_ids=segment_ids,
|
| 957 |
+
position_ids=position_ids,
|
| 958 |
+
inputs_embeds=inputs_embeds,
|
| 959 |
+
output_attentions=output_attentions,
|
| 960 |
+
output_hidden_states=output_hidden_states,
|
| 961 |
+
return_dict=return_dict,
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
pooled_output = outputs[1]
|
| 965 |
+
|
| 966 |
+
pooled_output = self.dropout(pooled_output)
|
| 967 |
+
logits = self.classifier(pooled_output)
|
| 968 |
+
|
| 969 |
+
loss = None
|
| 970 |
+
if labels is not None:
|
| 971 |
+
if self.config.problem_type is None:
|
| 972 |
+
if self.num_labels == 1:
|
| 973 |
+
self.config.problem_type = "regression"
|
| 974 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 975 |
+
self.config.problem_type = "single_label_classification"
|
| 976 |
+
else:
|
| 977 |
+
self.config.problem_type = "multi_label_classification"
|
| 978 |
+
|
| 979 |
+
if self.config.problem_type == "regression":
|
| 980 |
+
loss_fct = MSELoss()
|
| 981 |
+
if self.num_labels == 1:
|
| 982 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 983 |
+
else:
|
| 984 |
+
loss = loss_fct(logits, labels)
|
| 985 |
+
elif self.config.problem_type == "single_label_classification":
|
| 986 |
+
loss_fct = CrossEntropyLoss()
|
| 987 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 988 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 989 |
+
loss_fct = BCEWithLogitsLoss()
|
| 990 |
+
loss = loss_fct(logits, labels)
|
| 991 |
+
if not return_dict:
|
| 992 |
+
output = (logits,) + outputs[2:]
|
| 993 |
+
return ((loss,) + output) if loss is not None else output
|
| 994 |
+
|
| 995 |
+
return SequenceClassifierOutput(
|
| 996 |
+
loss=loss,
|
| 997 |
+
logits=logits,
|
| 998 |
+
hidden_states=outputs.hidden_states,
|
| 999 |
+
attentions=outputs.attentions,
|
| 1000 |
+
)
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7641471f11332c2344c83a7c15efdcd3d4e05b1d693d40006f37b71ce69d6627
|
| 3 |
+
size 590977869
|