|
import torch |
|
import urllib.request |
|
from PIL import Image |
|
from datasets import load_dataset |
|
from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification |
|
|
|
dataset = load_dataset("chriamue/bird-species-dataset") |
|
|
|
|
|
labels = dataset["test"].features["label"].names |
|
label2id, id2label = dict(), dict() |
|
for i, label in enumerate(labels): |
|
label2id[label] = str(i) |
|
id2label[str(i)] = label |
|
|
|
preprocessor = EfficientNetImageProcessor.from_pretrained("google/efficientnet-b2") |
|
model = EfficientNetForImageClassification.from_pretrained("chriamue/bird-species-classifier", num_labels=len( |
|
labels), id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True) |
|
|
|
image = dataset["validation"][0]["image"] |
|
|
|
url = 'https://upload.wikimedia.org/wikipedia/commons/a/a9/Common_Blackbird.jpg' |
|
image = Image.open(urllib.request.urlretrieve(url)[0]) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = model.to(device) |
|
|
|
inputs = preprocessor(image, return_tensors="pt") |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
predicted_label = logits.argmax(-1).item() |
|
print(labels[predicted_label]) |
|
|