--- library_name: transformers language: - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Taiwanese Small3 - Steven Wang results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: nan-tw split: None args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 90.87361803598526 --- # Whisper Taiwanese Small3 - Steven Wang This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7512 - Wer: 90.8736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.083 | 2.9240 | 1000 | 0.6382 | 93.2582 | | 0.0111 | 5.8480 | 2000 | 0.6895 | 91.6323 | | 0.0019 | 8.7719 | 3000 | 0.7383 | 91.1771 | | 0.0009 | 11.6959 | 4000 | 0.7512 | 90.8736 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0