--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: best_bert_model_fold_4 results: [] --- # best_bert_model_fold_4 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6077 - Accuracy: 0.8187 - Precision: 0.7940 - Recall: 0.7673 - F1: 0.7780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 252 | 0.5413 | 0.8088 | 0.7842 | 0.7520 | 0.7641 | | 0.5338 | 2.0 | 504 | 0.6077 | 0.8187 | 0.7940 | 0.7673 | 0.7780 | | 0.5338 | 3.0 | 756 | 0.9325 | 0.7928 | 0.7597 | 0.7270 | 0.7357 | | 0.1829 | 4.0 | 1008 | 1.1287 | 0.8068 | 0.7916 | 0.7662 | 0.7763 | | 0.1829 | 5.0 | 1260 | 1.2985 | 0.7988 | 0.7700 | 0.7688 | 0.7676 | | 0.0459 | 6.0 | 1512 | 1.5210 | 0.8108 | 0.7837 | 0.7721 | 0.7773 | | 0.0459 | 7.0 | 1764 | 1.5855 | 0.8028 | 0.7799 | 0.7611 | 0.7680 | | 0.0097 | 8.0 | 2016 | 1.5212 | 0.8008 | 0.7684 | 0.7731 | 0.7706 | | 0.0097 | 9.0 | 2268 | 1.5775 | 0.8028 | 0.7730 | 0.7656 | 0.7682 | | 0.0001 | 10.0 | 2520 | 1.5819 | 0.8048 | 0.7746 | 0.7669 | 0.7698 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1