--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: best_bert_model_fold_3 results: [] --- # best_bert_model_fold_3 This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2908 - Accuracy: 0.8386 - Precision: 0.8281 - Recall: 0.7986 - F1: 0.8101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 252 | 0.6290 | 0.8008 | 0.7903 | 0.7322 | 0.7457 | | 0.5166 | 2.0 | 504 | 0.6945 | 0.8068 | 0.8131 | 0.7396 | 0.7568 | | 0.5166 | 3.0 | 756 | 0.9795 | 0.8108 | 0.7953 | 0.7652 | 0.7721 | | 0.1546 | 4.0 | 1008 | 1.1504 | 0.8187 | 0.8024 | 0.7829 | 0.7902 | | 0.1546 | 5.0 | 1260 | 1.2908 | 0.8386 | 0.8281 | 0.7986 | 0.8101 | | 0.0243 | 6.0 | 1512 | 1.2868 | 0.8247 | 0.8043 | 0.7947 | 0.7988 | | 0.0243 | 7.0 | 1764 | 1.4339 | 0.8307 | 0.8214 | 0.7823 | 0.7949 | | 0.0077 | 8.0 | 2016 | 1.4287 | 0.8327 | 0.8222 | 0.7845 | 0.7978 | | 0.0077 | 9.0 | 2268 | 1.4630 | 0.8287 | 0.8098 | 0.7842 | 0.7941 | | 0.0001 | 10.0 | 2520 | 1.4618 | 0.8307 | 0.8129 | 0.7863 | 0.7966 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1