--- license: mit base_model: ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 22best_berita_roberta_model_fold_1 results: [] --- [Visualize in Weights & Biases]() [Visualize in Weights & Biases]() # 22best_berita_roberta_model_fold_1 This model is a fine-tuned version of [ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8575 - Accuracy: 0.8868 - Precision: 0.8904 - Recall: 0.8843 - F1: 0.8870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 106 | 0.9177 | 0.5472 | 0.7029 | 0.6055 | 0.5274 | | No log | 2.0 | 212 | 0.8990 | 0.7264 | 0.7612 | 0.7252 | 0.7101 | | No log | 3.0 | 318 | 0.7968 | 0.8491 | 0.8478 | 0.8622 | 0.8496 | | No log | 4.0 | 424 | 0.8026 | 0.8396 | 0.8400 | 0.8413 | 0.8353 | | 0.5042 | 5.0 | 530 | 1.0039 | 0.8443 | 0.8579 | 0.8603 | 0.8488 | | 0.5042 | 6.0 | 636 | 0.8274 | 0.8774 | 0.8743 | 0.8850 | 0.8780 | | 0.5042 | 7.0 | 742 | 0.8575 | 0.8868 | 0.8904 | 0.8843 | 0.8870 | | 0.5042 | 8.0 | 848 | 0.9014 | 0.8821 | 0.8806 | 0.8906 | 0.8830 | | 0.5042 | 9.0 | 954 | 0.9622 | 0.8726 | 0.8723 | 0.8859 | 0.8741 | | 0.0373 | 10.0 | 1060 | 0.9673 | 0.8726 | 0.8723 | 0.8859 | 0.8741 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1