--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-malay_headlines results: [] --- # pegasus-newsroom-malay_headlines This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6603 - Rouge1: 42.6667 - Rouge2: 22.8739 - Rougel: 38.6684 - Rougelsum: 38.6928 - Gen Len: 34.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9713 | 1.0 | 15310 | 1.8121 | 41.1469 | 21.5262 | 37.3081 | 37.3377 | 35.0939 | | 1.7917 | 2.0 | 30620 | 1.6913 | 42.4027 | 22.6089 | 38.4471 | 38.4699 | 34.8149 | | 1.7271 | 3.0 | 45930 | 1.6603 | 42.6667 | 22.8739 | 38.6684 | 38.6928 | 34.7995 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3