--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-headline_writer_oct22 results: [] --- # pegasus-newsroom-headline_writer_oct22 This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3462 - Rouge1: 41.8799 - Rouge2: 23.1785 - Rougel: 35.5346 - Rougelsum: 35.6203 - Gen Len: 34.3108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4364 | 1.0 | 38400 | 1.3730 | 41.9525 | 23.0823 | 35.5435 | 35.6485 | 34.1161 | | 1.2483 | 2.0 | 76800 | 1.3430 | 42.1538 | 23.3302 | 35.8119 | 35.9063 | 33.9333 | | 1.1873 | 3.0 | 115200 | 1.3462 | 41.8799 | 23.1785 | 35.5346 | 35.6203 | 34.3108 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1