--- library_name: transformers license: mit base_model: charisgao/wnc-pretrain tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [charisgao/wnc-pretrain](https://huggingface.co/charisgao/wnc-pretrain) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7055 - Precision: 0.8153 - Recall: 0.905 - F1: 0.8578 - Accuracy: 0.8071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.486 | 0.8547 | 100 | 0.5181 | 0.8224 | 0.8627 | 0.8421 | 0.7871 | | 0.4273 | 1.7094 | 200 | 0.5258 | 0.8095 | 0.9167 | 0.8598 | 0.8032 | | 0.3528 | 2.5641 | 300 | 0.7278 | 0.8072 | 0.8824 | 0.8431 | 0.7839 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3