# From https://stackoverflow.com/a/23689767 # From https://github.com/pytorch/pytorch/issues/97899 # From https://github.com/facebookresearch/llama/blob/main/llama/model.py import torch from torch import nn from xformers.ops import SwiGLU, memory_efficient_attention from .rmsnorm import RMSNorm from .rotary import precompute_freqs_cis, apply_rotary_emb from transformers import PreTrainedModel, PretrainedConfig from transformers.modeling_outputs import MaskedLMOutput class DotDict(dict): """Dictionary that supports the dot notation to access attributes (similarly to HuggingFace).""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ class AMPLIFYConfig(PretrainedConfig): model_type = "AMPLIFY" # All config parameters must have a default value. def __init__( self, hidden_size: int = 960, num_hidden_layers: int = 32, num_attention_heads: int = 15, intermediate_size: int = 3840, dropout_prob: float = 0, embedding_init_range: float = 0.02, decoder_init_range: float = 0.02, rms_norm: bool = True, norm_eps: float = 1e-05, hidden_act: str = "SwiGLU", layer_norm_after_embedding: bool = False, layer_norm_before_last_layer: bool = True, vocab_size: int = 27, ffn_bias: bool = False, att_bias: bool = False, pad_token_id: int = 0, max_length: int = 2048, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout_prob = dropout_prob self.embedding_init_range = embedding_init_range self.decoder_init_range = decoder_init_range self.rms_norm = rms_norm self.norm_eps = norm_eps self.hidden_act = hidden_act self.layer_norm_after_embedding = layer_norm_after_embedding self.layer_norm_before_last_layer = layer_norm_before_last_layer self.vocab_size = vocab_size self.ffn_bias = ffn_bias self.att_bias = att_bias self.pad_token_id = pad_token_id self.max_length = max_length class EncoderBlock(nn.Module): """Transformer encoder block.""" def __init__(self, config: AMPLIFYConfig): """Initialize a EncoderBlock. Args: hidden_size (int): _description_ num_attention_heads (int): _description_ intermediate_size (int, optional): _description_. Defaults to 2048. dropout_prob (float, optional): _description_. Defaults to 0.1. activation (str, optional): _description_. Defaults to "relu". rms_norm (bool, optional): _description_. Defaults to True. norm_eps (float, optional): _description_. Defaults to 1e-5. pad_token_id (int, optional): _description_. Defaults to 0. max_length (int, optional): _description_. Defaults to 2048. ffn_bias (bool, optional): _description_. Defaults to False. att_bias (bool, optional): _description_. Defaults to False. """ super().__init__() self.config = config self.d_head = config.hidden_size // config.num_attention_heads # Attention self.q = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias) self.k = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias) self.v = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias) self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=config.att_bias) self.resid_dropout = nn.Dropout(config.dropout_prob) # Feedforward network match config.hidden_act.lower(): case "swiglu": # To keep the number of parameters and the amount of computation constant, we reduce the number of # hidden units by a factor of 2/3 (https://arxiv.org/pdf/2002.05202.pdf) and make it a multiple of 8 to # avoid RuntimeError due to misaligned operand multiple_of = 8 intermediate_size = int(2 * config.intermediate_size / 3) intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of) self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=config.ffn_bias) case "relu": self.ffn = nn.Sequential( nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias), nn.ReLU(), nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias), ) case "gelu": self.ffn = nn.Sequential( nn.Linear(config.hidden_size, config.intermediate_size, bias=config.ffn_bias), nn.GELU(), nn.Linear(config.intermediate_size, config.hidden_size, bias=config.ffn_bias), ) self.attention_norm = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps) self.ffn_norm = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps) self.ffn_dropout = nn.Dropout(config.dropout_prob) def forward(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cis: torch.Tensor, output_attentions: bool): attn, contact = self._att_block(self.attention_norm(x), pad_mask, freqs_cis, output_attentions) x = x + attn x = x + self._ff_block(self.ffn_norm(x)) return x, contact def _att_block(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cis: torch.Tensor, output_attentions: bool): batch_size, seq_len, _ = x.shape xq, xk, xv = self.q(x), self.k(x), self.v(x) # Reshape for rotary embeddings xq = xq.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head) xk = xk.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head) xv = xv.view(batch_size, seq_len, self.config.num_attention_heads, self.d_head) xq, xk = apply_rotary_emb(xq, xk, freqs_cis) attn = memory_efficient_attention( query=xq, key=xk, value=xv, attn_bias=pad_mask, p=self.config.dropout_prob if self.training else 0, ) _attn = None if output_attentions: _attn = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5) if pad_mask is not None: _attn = _attn + pad_mask _attn = _attn.softmax(-1) return self.resid_dropout(self.wo(attn.view(batch_size, seq_len, self.config.num_attention_heads * self.d_head))), _attn def _ff_block(self, x: torch.Tensor): return self.ffn_dropout(self.ffn(x)) class AMPLIFYPreTrainedModel(PreTrainedModel): config_class = AMPLIFYConfig def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range) class AMPLIFY(AMPLIFYPreTrainedModel): """The main model class. Args: config (amplify.model.amplify.AMPLIFYConfig): model configuration, usually defined from the Hydra configuration. """ def __init__(self, config: AMPLIFYConfig, **kwargs): super().__init__(config) self.config = config self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) if config.layer_norm_after_embedding: self.layer_norm_1 = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps) self.transformer_encoder = nn.ModuleList() for _ in range(config.num_hidden_layers): self.transformer_encoder.append(EncoderBlock(config)) if config.layer_norm_before_last_layer: self.layer_norm_2 = RMSNorm(config.hidden_size, config.norm_eps) if config.rms_norm else nn.LayerNorm(config.hidden_size, config.norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length) # Initialize weights and apply final processing self.post_init() def forward(self, src, pad_mask=None, output_hidden_states=False, output_attentions=False): # Initialize hidden_states, attentions = [], [] # Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length) if pad_mask is not None and not torch.all(pad_mask == 0): pad_mask = pad_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, pad_mask.size(-1), 1) else: pad_mask = None # RoPE self.freqs_cis = self.freqs_cis.to(src.device, non_blocking=True) freqs_cis = self.freqs_cis[: src.shape[1]] # Embedding x = self.encoder(src) if self.config.layer_norm_after_embedding: x = self.layer_norm_1(x) # Transformer encoder for layer in self.transformer_encoder: x, attn = layer(x, pad_mask, freqs_cis, output_attentions) if output_hidden_states: hidden_states.append(x) if output_attentions: attentions.append(attn) # Classification head with layer norm logits = self.decoder(self.layer_norm_2(x) if self.config.layer_norm_before_last_layer else x) # Return logits or the output of the last hidden layer return MaskedLMOutput(logits=logits, hidden_states=hidden_states, attentions=attentions)