AMPLIFY_350M_base / rmsnorm.py
qfournier's picture
initial commit
05e2d85 verified
raw
history blame contribute delete
995 Bytes
import torch
from torch import nn
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight