--- tags: - generated_from_trainer datasets: - null metrics: - rouge model_index: - name: bart-base-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Rouge1 type: rouge value: 27.8379 --- # bart-base-finetuned-xsum This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5671 - Rouge1: 27.8379 - Rouge2: 16.2683 - Rougel: 24.1898 - Rougelsum: 25.5234 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9931 | 1.0 | 879 | 1.5671 | 27.8379 | 16.2683 | 24.1898 | 25.5234 | 20.0 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3