{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79fe84c8e5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689779796808038803, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH3IVLxQEKg/paCovwLSNL82tAs/Y6SmPW1w6j1TxGo/DzR0vqGjkz8ZK40+6EriPjpHxL+Eou2/M2Epv67UyL4ycYO+82QBQFgAEL/PI0k/+VyvP5yEPkA+qTG+sO/9vgOJVb8DjQbAnfy5PuYHtr9C0+U+a1MNvw6dQT+YXp6/HFCmPiioy798Aw29JbqHPnQUPr/jBmm/3kvRP+H2oz4PXsC/dNCYP0zbqL5z/mbAsjWFP4jT87/Xu26+1ZC4P44qNz8R+gDAL0UtvwZqMkBtdJk/A40GwD8vMMDmB7a/Bv97Pw/AVD+tNIG+IqEhPUOiuT2hwkTAOF8tP3OdiD4zCbc+7PI7v3nrMD+/pQpACI9qvmE1VsASSZi+9MTHPt+c8b6kZVW+GFy9vr8jFsAWweQ+h5T0P28yyb3fvMS/A4lVvwONBsCd/Lk+5ge2vxMh7z5S/nc/3QD5vvcorr8bC4C/jrRHP8yfJj2smtk+zxPuvtYMO8CTYtc/toOEvjN1Jz6QllzAT87vPckkj7/OZTq+1ATCv/LnD79ax4W/VxUwvrRhmT9jBci+ww6jv210mT8DjQbAnfy5PuYHtr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD4poI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU7hgvAAAAABYX/C/AAAAACwtPD0AAAAArKHsPwAAAADxwZW8AAAAAJms6z8AAAAATacGvgAAAADAQPC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9UyHtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGGU0L0AAAAAYwfrvwAAAACs8Be9AAAAACn2/T8AAAAA/soJvgAAAACd0wBAAAAAAKJo8LwAAAAAENHpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABWZ2LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICjRqg8AAAAALt+4b8AAAAAb3m2vAAAAABKZug/AAAAAK4a4L0AAAAA5WnyPwAAAAC2ge49AAAAAJmg/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXpRi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy1XxvQAAAAAWQgHAAAAAAOxbBb4AAAAA60HqPwAAAAABA5G9AAAAAKrt2j8AAAAAcHK8PAAAAACooOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJe57FQ2uPqMAWyUTegDjAF0lEdArD8yZOSGJ3V9lChoBkdAlfy+OwPiDWgHTegDaAhHQKw/2FAVwgl1fZQoaAZHQJgDOCROk+JoB03oA2gIR0CsSSdUjs2OdX2UKGgGR0CYzfc2itaIaAdN6ANoCEdArE3a1NQCS3V9lChoBkdAmOCFEE1VHWgHTegDaAhHQKxO0hUR3/x1fZQoaAZHQJejJWbPQfJoB03oA2gIR0CsT0U5U96kdX2UKGgGR0CaNcMQ2/BWaAdN6ANoCEdArFYPzMA3k3V9lChoBkdAmry3f2saKmgHTegDaAhHQKxapCIDYAd1fZQoaAZHQJvI8IyCWeJoB03oA2gIR0CsW/wco6S1dX2UKGgGR0CaZw1DjR2KaAdN6ANoCEdArFyX6qKgqXV9lChoBkdAmptgyRB/qmgHTegDaAhHQKxmjTkyULV1fZQoaAZHQJyWz6pHZsdoB03oA2gIR0CsayChnJ1adX2UKGgGR0CcIIPrOZ9eaAdN6ANoCEdArGwOOS4e93V9lChoBkdAm0q2HgxagWgHTegDaAhHQKxse4x1xKh1fZQoaAZHQJovyiYb83xoB03oA2gIR0CsczNGmUGFdX2UKGgGR0CadoJmdy1eaAdN6ANoCEdArHfNKTSssHV9lChoBkdAm7jKNAC4jWgHTegDaAhHQKx4tHQQcxV1fZQoaAZHQJve/KU3XI5oB03oA2gIR0CseSQtapxWdX2UKGgGR0CYW9O4oZydaAdN6ANoCEdArIMcjiXIEXV9lChoBkdAmmqZ0r9VFWgHTegDaAhHQKyImtozvZ11fZQoaAZHQJtNwGpuMuRoB03oA2gIR0CsiY79ZRsNdX2UKGgGR0CaSS8Hv+fiaAdN6ANoCEdArIoCF7D2rXV9lChoBkdAm8IKwhW5pmgHTegDaAhHQKyQ3prULD11fZQoaAZHQJwa2df9gndoB03oA2gIR0CslZLupjtpdX2UKGgGR0CdBra6z3RHaAdN6ANoCEdArJaDM7lq8HV9lChoBkdAnC0cDjin52gHTegDaAhHQKyW9bTMJQd1fZQoaAZHQJ2wXm5lOGloB03oA2gIR0CsoBn4wh4ddX2UKGgGR0CdZF4Glhw3aAdN6ANoCEdArKYak690zXV9lChoBkdAna71+y7f52gHTegDaAhHQKynE+sYEW91fZQoaAZHQJ1hEHmig01oB03oA2gIR0Csp4OxjawmdX2UKGgGR0Cc2777Kq4paAdN6ANoCEdArK45eXzDoHV9lChoBkdAnX77mQr+YWgHTegDaAhHQKyywSSvC/J1fZQoaAZHQJuROUpuuRtoB03oA2gIR0Css7N9H+ZPdX2UKGgGR0Ccvt4zrNW3aAdN6ANoCEdArLQfoxHoYHV9lChoBkdAnkx5BTn7pGgHTegDaAhHQKy8PLSuyNZ1fZQoaAZHQJ5lhdrwe/5oB03oA2gIR0Csw3qwIMScdX2UKGgGR0CcfB6pYLb6aAdN6ANoCEdArMRwtOEdvXV9lChoBkdAnemr7CSA6WgHTegDaAhHQKzE4bsniNt1fZQoaAZHQJtMMnb7CSBoB03oA2gIR0Csy5/5ULlWdX2UKGgGR0CYO5X/HYHxaAdN6ANoCEdArNA+ZgG8mXV9lChoBkdAmQ+4qXnhbWgHTegDaAhHQKzRK3irDIl1fZQoaAZHQJiJTor4FidoB03oA2gIR0Cs0Zx64UeudX2UKGgGR0CX6rKEnLJTaAdN6ANoCEdArNwa4Bmwq3V9lChoBkdAmHmfqoqCpWgHTegDaAhHQKzkY5dWyTp1fZQoaAZHQJZARUgjhUBoB03oA2gIR0Cs5dfzz3AVdX2UKGgGR0CWKGoAGSpzaAdN6ANoCEdArOaDR0EHMXV9lChoBkdAmV+WRV6u4mgHTegDaAhHQKztc+9Jz1d1fZQoaAZHQJvWPyOJcgRoB03oA2gIR0Cs8f9RaX8gdX2UKGgGR0CaHIkBCD28aAdN6ANoCEdArPLxd0JWvXV9lChoBkdAnKEtDtw71mgHTegDaAhHQKzzZMs6JZZ1fZQoaAZHQJ0SPOC5EtxoB03oA2gIR0Cs+oEf9xZMdX2UKGgGR0CdK8Wl/H5raAdN6ANoCEdArQFAvDgqE3V9lChoBkdAnNgdXPqs2mgHTegDaAhHQK0Czsu3+dd1fZQoaAZHQJzOOtZFG5NoB03oA2gIR0CtA4CkoF3ZdX2UKGgGR0CaeP+OwPiDaAdN6ANoCEdArQtNkhA4XHV9lChoBkdAmkTQ04zabmgHTegDaAhHQK0P7YRujyp1fZQoaAZHQJrzMcfeUINoB03oA2gIR0CtEN03fhuPdX2UKGgGR0CaZSnx8UmEaAdN6ANoCEdArRFPbj94vHV9lChoBkdAmxmKlUIcBGgHTegDaAhHQK0YECsfaHt1fZQoaAZHQJxb0lv60ppoB03oA2gIR0CtHbhs67uldX2UKGgGR0CatXmFJxvOaAdN6ANoCEdArR8h8D0UXnV9lChoBkdAmKGeuV5a/2gHTegDaAhHQK0f1aPjn3d1fZQoaAZHQJ02QFSsKb9oB03oA2gIR0CtKLO63AmBdX2UKGgGR0Cbi9GOMl1KaAdN6ANoCEdArS1T72tdRnV9lChoBkdAm+L7DVH4GmgHTegDaAhHQK0uRSVGCqZ1fZQoaAZHQJsXUDW9US9oB03oA2gIR0CtLrYxL0z1dX2UKGgGR0Ca6fJHiFTOaAdN6ANoCEdArTWYA80UGnV9lChoBkdAmuWbF0gbImgHTegDaAhHQK06q12q1gJ1fZQoaAZHQJqpbIMjNY9oB03oA2gIR0CtPBwIldC3dX2UKGgGR0CZzRtALRa5aAdN6ANoCEdArTy7MV1wHnV9lChoBkdAmn+dFSbYsmgHTegDaAhHQK1GMhpxm051fZQoaAZHQJqtsjeKsMloB03oA2gIR0CtSsjFAE+xdX2UKGgGR0CY5DkvK2a2aAdN6ANoCEdArUu2C5EtunV9lChoBkdAmKu1WKdhAmgHTegDaAhHQK1MKsIVuaZ1fZQoaAZHQJuzSL61stVoB03oA2gIR0CtUv9B0ITodX2UKGgGR0CaTN9F4LThaAdN6ANoCEdArVeFY+0PYnV9lChoBkdAm62qaTfR/mgHTegDaAhHQK1YfrCWNWF1fZQoaAZHQJr+SMOwxFloB03oA2gIR0CtWSerELpidX2UKGgGR0CZ8ed56dDqaAdN6ANoCEdArWNjFGXoknV9lChoBkdAmQKB3qzJIWgHTegDaAhHQK1n2whW5pd1fZQoaAZHQJu1EZEUj9poB03oA2gIR0CtaMdtdiUgdX2UKGgGR0CcG1klu3tsaAdN6ANoCEdArWkzRfF72XV9lChoBkdAnVEBbjcVQGgHTegDaAhHQK1v5AY51eV1fZQoaAZHQJxns99tuUFoB03oA2gIR0CtdGiNbTttdX2UKGgGR0CdSN3azu4PaAdN6ANoCEdArXVfpr1ui3V9lChoBkdAnda1UuL742gHTegDaAhHQK11zrUsnRd1fZQoaAZHQJ1yqW4Vh1FoB03oA2gIR0Ctf2BFEy+IdX2UKGgGR0Cc42BPbfxdaAdN6ANoCEdArYUqUs4DLnV9lChoBkdAnBpxxT850mgHTegDaAhHQK2GGA8Swnp1fZQoaAZHQJzB+uIRAbBoB03oA2gIR0CthoaEzwc6dX2UKGgGR0CYStu63AmBaAdN6ANoCEdArY02KVII4XV9lChoBkdAmaRz4k/r0WgHTegDaAhHQK2RwCbtqpN1fZQoaAZHQJfZZZ4fOlhoB03oA2gIR0CtkrNf5ULldX2UKGgGR0CYODvxpcoqaAdN6ANoCEdArZMkYCQtBnV9lChoBkdAmjpgfU4JeGgHTegDaAhHQK2bVFYuCf91fZQoaAZHQJkK65Fw1ixoB03oA2gIR0CtoiMYdhiLdX2UKGgGR0Ca0nK8+RozaAdN6ANoCEdAraMZGpda+3V9lChoBkdAm2SMer+5v2gHTegDaAhHQK2jicFyJbd1fZQoaAZHQJtZ67oSteVoB03oA2gIR0Ctqo6naWX1dX2UKGgGR0CYah03Ov+waAdN6ANoCEdAra9EeU6gd3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}