--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 tags: - chat - abliterated - uncensored --- # Qwen2.5-14B-Instruct-abliterated-v2-exl2 Model: [Qwen2.5-14B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) Made by: [huihui-ai](https://huggingface.co/huihui-ai) ## Quants [4bpw h6 (main)](https://huggingface.co/cgus/Qwen2.5-14B-Instruct-abliterated-v2-exl2/tree/main) [4.5bpw h6](https://huggingface.co/cgus/Qwen2.5-14B-Instruct-abliterated-v2-exl2/tree/4.5bpw-h6) [5bpw h6](https://huggingface.co/cgus/Qwen2.5-14B-Instruct-abliterated-v2-exl2/tree/5bpw-h6) [6bpw h6](https://huggingface.co/cgus/Qwen2.5-14B-Instruct-abliterated-v2-exl2/tree/6bpw-h6) [8bpw h8](https://huggingface.co/cgus/Qwen2.5-14B-Instruct-abliterated-v2-exl2/tree/8bpw-h8) ## Quantization notes Made with exllamav2 0.2.3 with the default dataset. Exl2 quants can be used with Nvidia RTX2xxx or newer GPUs on Windows/Linux or AMD on Linux. This model format works the best when a model fits your GPU, otherwise it's better to use GGUF versions. For example with RTX3060/12GB I could fit 4.5bpw/5bpw with Q6 cache and 16k context. Use with with Text-Generation-WebUI, TabbyAPI or other apps that have exllamav2 loader. # Original model card # huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 This is an uncensored version of [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. **Important Note** This version is an improvement over the previous one [Qwen2.5-14B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated). ## Usage You can use this model in your applications by loading it with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") ``` ## Evaluations Evaluation is ongoing, to be continued later.