--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Prompt-Guard-finetuned-ctf-86M results: [] --- # Prompt-Guard-finetuned-ctf-86M This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0155 - Accuracy: 0.9972 - Precision: 0.9972 - Recall: 0.9972 - F1: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0364 | 1.0 | 2344 | 0.0224 | 0.9964 | 0.9964 | 0.9964 | 0.9964 | | 0.038 | 2.0 | 4688 | 0.0405 | 0.9893 | 0.9907 | 0.9893 | 0.9897 | | 0.0126 | 3.0 | 7032 | 0.0211 | 0.9962 | 0.9962 | 0.9962 | 0.9962 | | 0.0077 | 4.0 | 9376 | 0.0206 | 0.9966 | 0.9966 | 0.9966 | 0.9966 | | 0.0038 | 5.0 | 11720 | 0.0155 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | | 0.0015 | 6.0 | 14064 | 0.0201 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.5.0+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1