--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: Prompt-Guard-finetuned-ctf-86M results: [] --- # Prompt-Guard-finetuned-ctf-86M This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0226 - Accuracy: 0.9964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0291 | 1.0 | 2346 | 0.0315 | 0.9953 | | 0.0222 | 2.0 | 4692 | 0.0318 | 0.9953 | | 0.0081 | 3.0 | 7038 | 0.0226 | 0.9964 | | 0.0032 | 4.0 | 9384 | 0.0329 | 0.9966 | | 0.0031 | 5.0 | 11730 | 0.0352 | 0.9957 | | 0.0039 | 6.0 | 14076 | 0.0242 | 0.9974 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.5.0+cu124 - Datasets 2.18.0 - Tokenizers 0.19.1