--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards widget: - text: "[Q] cengiz han binbasi olarak kim atadi" example_title: "Örnek 1" - text: "[Q] 2003 dunya halter sampiyonasi hangi tarihlerde yapildi" example_title: "Örnek 2" - text: "[Q] ahmet haldun dormen hangi tarihte dogmustur" example_title: "Örnek 3" - text: "[Q] ender dogan kimdir" example_title: "Örnek 4" - text: "[Q] isil kasapoglu nun meslegi nedir" example_title: "Örnek 5" - text: "[Q] mustafa sagyasar ankara radyosu nda ne yapti" example_title: "Örnek 6" - text: "[Q] behiye aksoy kac yasinda vefat etmistir" example_title: "Örnek 7" - text: "[Q] tekken in kelime ismi nedir" example_title: "Örnek 8" --- # Model Card for Model ID Bu model test amaçlı hazırlanmıştır ve fikir vermesi açısından geliştirilmiştir. Model için Vikipedi üzerinden üretilen 40 bin soru cevap GPT ile eğitilmiştir. Daha büyük veri setlerinde daha iyi sonuçlar alınabilir. ## Model Details ## Başlıklara göre en fazla soru cevap içeren konular aşağıdadır: * Futbol rekabetleri listesi: 313 adet * Cengiz Han: 310 adet * Triple H: 196 adet * Lüleburgaz Muharebesi: 158 adet * Zümrüdüanka Yoldaşlığı: 155 adet * Shakespeare eserleri çevirileri listesi: 145 adet * Kırkpınar Yağlı Güreşleri: 142 adet * Sovyetler Birliği'nin askerî tarihi: 136 adet * I. Baybars: 135 adet * Dumbledore'un Ordusu: 126 adet * Nicolaus Copernicus: 119 adet * Ermenistan Sovyet Sosyalist Cumhuriyeti: 111 adet * Boshin Savaşı: 99 adet * Suvorov Harekâtı: 98 adet * Gökhan Türkmen: 96 adet * Wolfgang Amadeus Mozart: 95 adet * Joachim von Ribbentrop: 95 adet * Rumyantsev Harekâtı: 94 adet * Hermann Göring: 93 adet * Nâzım Hikmet: 90 adet * Said Nursî: 90 adet * Emîn: 88 adet * Antonio Gramsci: 87 adet * Gilles Deleuze: 86 adet * Madagaskar: 86 adet * Faşizm: 85 adet * Mac OS X Snow Leopard: 85 adet * Korsun-Şevçenkovski Taarruzu: 84 adet * Soğuk Savaş: 84 adet * Adolf Eichmann: 83 adet * Niccolò Paganini: 83 adet * II. Dünya Savaşı tankları: 81 adet * Pergamon: 81 adet * IV. Mihail: 80 adet * Bolşeviklere karşı sol ayaklanmalar: 77 adet * Osman Gazi: 77 adet * V. Leon: 76 adet * Ajda Pekkan: 75 adet * Mehdi Savaşı: 75 adet * Tsushima Muharebesi: 73 adet * Mehdî (Abbâsî halifesi): 72 adet * Franck Ribéry: 72 adet * I. Basileios: 69 adet * Antimon: 68 adet * Kolomb öncesi Amerika: 68 adet * Otto Skorzeny: 68 adet * Kâzım Koyuncu: 68 adet * İmamiye (Şiilik öğretisi): 66 adet * Oscar Niemeyer: 66 adet ### Model Description - **Developed by:** Cenker Sisman - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model :** redrussianarmy/gpt2-turkish-cased ![Loss değerleri](https://huggingface.co/cenkersisman/chatbotgpt-turkish/resolve/main/lossdegerleri.jpg) ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model ```python """Inference""" from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel, GPT2TokenizerFast, GPT2Tokenizer def load_model(model_path): model = GPT2LMHeadModel.from_pretrained(model_path) return model def load_tokenizer(tokenizer_path): tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) return tokenizer def generate_text(model_path, sequence, max_length): model = load_model(model_path) tokenizer = load_tokenizer(model_path) ids = tokenizer.encode(sequence, return_tensors='pt') outputs = model.generate( ids, do_sample=True, max_length=max_length, pad_token_id=model.config.eos_token_id, top_k=1, top_p=0.99, ) converted = tokenizer.convert_ids_to_tokens(outputs[0]) valid_tokens = [token if token is not None else '.' for token in converted] generated_text = tokenizer.convert_tokens_to_string(valid_tokens) print(generated_text) model2_path = "cenkersisman/chatbotgpt-turkish" sequence2 = "[Q] cengiz han kimdir" max_len = 120 generate_text(model2_path, sequence2, max_len) ``` ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]