--- tags: - Llamba - recurrent-models - distillation - cartesia - edge license: apache-2.0 library_name: cartesia-pytorch datasets: - ai2_arc - PIQA - Winogrande - HellaSwag - Lambada - MMLU - OpenBookQA inference: precision: bf16 hardware: gpu --- # Llamba Models The Llamba models are part of Cartesia's [Edge](https://github.com/cartesia-ai/edge) library, designed for efficient, high-performance machine learning applications. For more details, refer to the [paper](https://arxiv.org/abs/2502.14458). --- ## Usage ### Llamba on PyTorch To use Llamba with PyTorch: 1. Install the required package: ```bash pip install --no-binary :all: cartesia-pytorch ``` 2. Load and run the model ```python from transformers import AutoTokenizer from cartesia_pytorch.Llamba.llamba import LlambaLMHeadModel model = LlambaLMHeadModel.from_pretrained("cartesia-ai/Llamba-3B", strict=True).to('cuda') tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B") input_ids = tokenizer("Hello, my name is", return_tensors="pt").input_ids input_ids = input_ids.to('cuda') output = model.generate(input_ids, max_length=100)[0] print(tokenizer.decode(output, skip_special_tokens=True)) ``` ### Llamba on MLX To run Llamba with the Metal framework see [cartesia-metal](https://github.com/cartesia-ai/edge/tree/main/cartesia-metal) --- ### Evaluations The Llamba models have been evaluated on multiple standard benchmarks, demonstrating efficiency gains while maintaining strong performance. Below are the results: | Model | ARC-C (0-shot) | ARC-C (25-shot) | ARC-E (0-shot) | ARC-E (25-shot) | PIQA (0-shot) | PIQA (10-shot) | WG (0-shot) | WG (5-shot) | |------------|---------------|----------------|---------------|----------------|---------------|---------------|------------|------------| | Llamba-1B | 37.2 | 41.8 | 69.5 | 71.2 | 74.0 | 74.3 | 60.6 | 58.1 | | Llamba-3B | 48.5 | 53.0 | 79.0 | 81.1 | 78.6 | 79.5 | 70.4 | 72.4 | | Llamba-8B | 54.6 | 60.0 | 82.5 | 85.8 | 80.9 | 81.5 | 73.3 | 76.9 | | Model | HS (0-shot) | HS (10-shot) | LMB (0-shot) | LMB (10-shot) | MMLU (0-shot) | MMLU (5-shot) | OBQA (0-shot) | OBQA (10-shot) | |------------|------------|------------|------------|------------|------------|------------|------------|------------| | Llamba-1B | 61.2 | 60.2 | 48.4 | 39.0 | 38.0 | 31.3 | 37.0 | 38.0 | | Llamba-3B | 73.8 | 74.3 | 65.8 | 60.0 | 52.7 | 50.3 | 42.8 | 42.8 | | Llamba-8B | 77.6 | 78.7 | 69.4 | 65.0 | 61.0 | 60.0 | 43.4 | 45.8 | More details on model performance, benchmarks, and evaluation metrics can be found in the [paper](https://arxiv.org/abs/2502.14458).