--- language: fo datasets: - carlosdanielhernandezmena/ravnursson_asr tags: - audio - automatic-speech-recognition - faroese - xlrs-53-faroese - ravnur-project - faroe-islands license: cc-by-4.0 widget: model-index: - name: wav2vec2-large-xlsr-53-faroese-100h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Ravnursson (Test) type: carlosdanielhernandezmena/ravnursson_asr split: test args: language: fo metrics: - name: WER type: wer value: 7.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Ravnursson (Dev) type: carlosdanielhernandezmena/ravnursson_asr split: validation args: language: fo metrics: - name: WER type: wer value: 5.5 --- # wav2vec2-large-xlsr-53-faroese-100h The "wav2vec2-large-xlsr-53-faroese-100h" is an acoustic model suitable for Automatic Speech Recognition in Faroese. It is the result of fine-tuning the model "facebook/wav2vec2-large-xlsr-53" with 100 hours of Faroese data released by the Ravnur Project (https://maltokni.fo/en/) from the Faroe Islands. The specific dataset used to create the model is called "Ravnursson Faroese Speech and Transcripts" and it is available at http://hdl.handle.net/20.500.12537/276. The fine-tuning process was perform during November (2022) in the servers of the Language and Voice Lab (https://lvl.ru.is/) at Reykjavík University (Iceland) by Carlos Daniel Hernández Mena. # Evaluation ```python import torch from transformers import Wav2Vec2Processor from transformers import Wav2Vec2ForCTC #Load the processor and model. MODEL_NAME="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h" processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME) #Load the dataset from datasets import load_dataset, load_metric, Audio ds=load_dataset("carlosdanielhernandezmena/ravnursson_asr",split='test') #Downsample to 16kHz ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) #Process the dataset def prepare_dataset(batch): audio = batch["audio"] #Batched output is "un-batched" to ensure mapping is correct batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] with processor.as_target_processor(): batch["labels"] = processor(batch["normalized_text"]).input_ids return batch ds = ds.map(prepare_dataset, remove_columns=ds.column_names,num_proc=1) #Define the evaluation metric import numpy as np wer_metric = load_metric("wer") def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_str = processor.batch_decode(pred_ids) #We do not want to group tokens when computing the metrics label_str = processor.batch_decode(pred.label_ids, group_tokens=False) wer = wer_metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} #Do the evaluation (with batch_size=1) model = model.to(torch.device("cuda")) def map_to_result(batch): with torch.no_grad(): input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0) logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_str"] = processor.batch_decode(pred_ids)[0] batch["sentence"] = processor.decode(batch["labels"], group_tokens=False) return batch results = ds.map(map_to_result,remove_columns=ds.column_names) #Compute the overall WER now. print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["sentence"]))) ``` **Test Result**: 0.076 # BibTeX entry and citation info *When publishing results based on these models please refer to:* ```bibtex @misc{mena2022xlrs53faroese, title={Acoustic Model in Faroese: wav2vec2-large-xlsr-53-faroese-100h.}, author={Hernandez Mena, Carlos Daniel}, year={2022}, url={https://huggingface.co/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h}, } ``` # Acknowledgements We want to thank to Jón Guðnason, head of the Language and Voice Lab for providing computational power to make this model possible. We also want to thank to the "Language Technology Programme for Icelandic 2019-2023" which is managed and coordinated by Almannarómur, and it is funded by the Icelandic Ministry of Education, Science and Culture. Special thanks to Annika Simonsen and to The Ravnur Project for making their "Basic Language Resource Kit"(BLARK 1.0) publicly available through the research paper "Creating a Basic Language Resource Kit for Faroese" https://aclanthology.org/2022.lrec-1.495.pdf