--- language: multilingual widget: - text: "🤗" - text: "T'estimo! ❤️" - text: "I love you!" - text: "I hate you 🤮" - text: "Mahal kita!" - text: "사랑해!" - text: "난 너가 싫어" - text: "😍😍😍" --- # twitter-XLM-roBERTa-base for Sentiment Analysis This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages (see paper for details). - Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://...). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/xlm-t). ## Example Pipeline ```python from transformers import pipeline model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment" sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task("T'estimo!") ``` ``` [{'label': 'Positive', 'score': 0.6600581407546997}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) Positive 0.7673 2) Neutral 0.2015 3) Negative 0.0313 ```