Commit 
							
							·
						
						a5eb8c4
	
1
								Parent(s):
							
							f26dba9
								
Upload 2 files
Browse files- app.py +287 -0
- reqirements.rtf +32 -0
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,287 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # -*- coding: utf-8 -*-
         | 
| 2 | 
            +
            """main.py
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            Automatically generated by Colaboratory.
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            Original file is located at
         | 
| 7 | 
            +
                https://colab.research.google.com/drive/1DPJ6tc2bCveBZyHSX02h_fbBS0fzzMrC
         | 
| 8 | 
            +
            """
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            from langchain.chains import ConversationalRetrievalChain
         | 
| 12 | 
            +
            from langchain.chains.question_answering import load_qa_chain
         | 
| 13 | 
            +
            from langchain.memory import ConversationBufferMemory
         | 
| 14 | 
            +
            from langchain.llms import HuggingFacePipeline
         | 
| 15 | 
            +
            from langchain import PromptTemplate
         | 
| 16 | 
            +
            from langchain.embeddings import HuggingFaceEmbeddings
         | 
| 17 | 
            +
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 18 | 
            +
            from langchain.vectorstores import Chroma
         | 
| 19 | 
            +
            from langchain.document_loaders import (
         | 
| 20 | 
            +
                CSVLoader,
         | 
| 21 | 
            +
                DirectoryLoader,
         | 
| 22 | 
            +
                GitLoader,
         | 
| 23 | 
            +
                NotebookLoader,
         | 
| 24 | 
            +
                OnlinePDFLoader,
         | 
| 25 | 
            +
                PythonLoader,
         | 
| 26 | 
            +
                TextLoader,
         | 
| 27 | 
            +
                UnstructuredFileLoader,
         | 
| 28 | 
            +
                UnstructuredHTMLLoader,
         | 
| 29 | 
            +
                UnstructuredPDFLoader,
         | 
| 30 | 
            +
                UnstructuredWordDocumentLoader,
         | 
| 31 | 
            +
                WebBaseLoader,
         | 
| 32 | 
            +
            )
         | 
| 33 | 
            +
            from transformers import (
         | 
| 34 | 
            +
                AutoModelForCausalLM,
         | 
| 35 | 
            +
                AutoTokenizer,
         | 
| 36 | 
            +
                StoppingCriteria,
         | 
| 37 | 
            +
                StoppingCriteriaList,
         | 
| 38 | 
            +
                pipeline,
         | 
| 39 | 
            +
                GenerationConfig,
         | 
| 40 | 
            +
                TextStreamer,
         | 
| 41 | 
            +
                pipeline
         | 
| 42 | 
            +
            )
         | 
| 43 | 
            +
            import torch
         | 
| 44 | 
            +
            from transformers import BitsAndBytesConfig
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            def load_model(
         | 
| 47 | 
            +
                model_path="vilsonrodrigues/falcon-7b-instruct-sharded"
         | 
| 48 | 
            +
            ):
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                if not os.path.exists(model_path):
         | 
| 51 | 
            +
                    raise FileNotFoundError(f"No model file found at {model_path}")
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                quantization_config = BitsAndBytesConfig(
         | 
| 54 | 
            +
                  load_in_4bit=True,
         | 
| 55 | 
            +
                  bnb_4bit_compute_dtype=torch.float16,
         | 
| 56 | 
            +
                  bnb_4bit_quant_type="nf4",
         | 
| 57 | 
            +
                  bnb_4bit_use_double_quant=True,
         | 
| 58 | 
            +
                )
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                model_4bit = AutoModelForCausalLM.from_pretrained(
         | 
| 61 | 
            +
                    model_path,
         | 
| 62 | 
            +
                    device_map="auto",
         | 
| 63 | 
            +
                    quantization_config=quantization_config,
         | 
| 64 | 
            +
                    )
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                tokenizer = AutoTokenizer.from_pretrained(model_path)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                pipeline = pipeline(
         | 
| 69 | 
            +
                    "text-generation",
         | 
| 70 | 
            +
                    model=model_4bit,
         | 
| 71 | 
            +
                    tokenizer=tokenizer,
         | 
| 72 | 
            +
                    use_cache=True,
         | 
| 73 | 
            +
                    device_map="auto",
         | 
| 74 | 
            +
                    max_length=700,
         | 
| 75 | 
            +
                    do_sample=True,
         | 
| 76 | 
            +
                    top_k=5,
         | 
| 77 | 
            +
                    num_return_sequences=1,
         | 
| 78 | 
            +
                    eos_token_id=tokenizer.eos_token_id,
         | 
| 79 | 
            +
                    pad_token_id=tokenizer.eos_token_id,
         | 
| 80 | 
            +
                )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                llm = HuggingFacePipeline(pipeline=pipeline)
         | 
| 83 | 
            +
                return llm
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            def create_vector_database():
         | 
| 86 | 
            +
                DB_DIR: str = os.path.join(ABS_PATH, "db")
         | 
| 87 | 
            +
                """
         | 
| 88 | 
            +
                Creates a vector database using document loaders and embeddings.
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                This function loads data from PDF, markdown and text files in the 'data/' directory,
         | 
| 91 | 
            +
                splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
         | 
| 92 | 
            +
                and finally persists the embeddings into a Chroma vector database.
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                """
         | 
| 95 | 
            +
                # Initialize loaders for different file types
         | 
| 96 | 
            +
                pdf_loader = DirectoryLoader("data/", glob="**/*.pdf", loader_cls=PyPDFLoader)
         | 
| 97 | 
            +
                markdown_loader = DirectoryLoader("data/", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader)
         | 
| 98 | 
            +
                text_loader = DirectoryLoader("data/", glob="**/*.txt", loader_cls=TextLoader)
         | 
| 99 | 
            +
                csv_loader = DirectoryLoader("data/", glob="**/*.csv", loader_cls=CSVLoader)
         | 
| 100 | 
            +
                python_loader = DirectoryLoader("data/", glob="**/*.py", loader_cls=PythonLoader)
         | 
| 101 | 
            +
                epub_loader = DirectoryLoader("data/", glob="**/*.epub", loader_cls=UnstructuredEPubLoader)
         | 
| 102 | 
            +
                html_loader = DirectoryLoader("data/", glob="**/*.html", loader_cls=UnstructuredHTMLLoader)
         | 
| 103 | 
            +
                ppt_loader = DirectoryLoader("data/", glob="**/*.ppt", loader_cls=UnstructuredPowerPointLoader)
         | 
| 104 | 
            +
                pptx_loader = DirectoryLoader("data/", glob="**/*.pptx", loader_cls=UnstructuredPowerPointLoader)
         | 
| 105 | 
            +
                doc_loader = DirectoryLoader("data/", glob="**/*.doc", loader_cls=UnstructuredWordDocumentLoader)
         | 
| 106 | 
            +
                docx_loader = DirectoryLoader("data/", glob="**/*.docx", loader_cls=UnstructuredWordDocumentLoader)
         | 
| 107 | 
            +
                odt_loader = DirectoryLoader("data/", glob="**/*.odt", loader_cls=UnstructuredODTLoader)
         | 
| 108 | 
            +
                notebook_loader = DirectoryLoader("data/", glob="**/*.ipynb", loader_cls=NotebookLoader)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
                all_loaders = [pdf_loader, markdown_loader, text_loader, csv_loader, python_loader, epub_loader, html_loader, ppt_loader, pptx_loader, doc_loader, docx_loader, odt_loader, notebook_loader]
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                # Load documents from all loaders
         | 
| 114 | 
            +
                loaded_documents = []
         | 
| 115 | 
            +
                for loader in all_loaders:
         | 
| 116 | 
            +
                    loaded_documents.extend(loader.load())
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                # Split loaded documents into chunks
         | 
| 119 | 
            +
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)
         | 
| 120 | 
            +
                chunked_documents = text_splitter.split_documents(loaded_documents)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                # Initialize HuggingFace embeddings
         | 
| 123 | 
            +
                embeddings = HuggingFaceEmbeddings(
         | 
| 124 | 
            +
                    model_name="sentence-transformers/all-MiniLM-L6-v2"
         | 
| 125 | 
            +
                )
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                # Create and persist a Chroma vector database from the chunked documents
         | 
| 128 | 
            +
                db = Chroma.from_documents(
         | 
| 129 | 
            +
                    documents=chunked_documents,
         | 
| 130 | 
            +
                    embedding=embeddings,
         | 
| 131 | 
            +
                    persist_directory=DB_DIR,
         | 
| 132 | 
            +
                )
         | 
| 133 | 
            +
                db.persist()
         | 
| 134 | 
            +
                return db
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            def set_custom_prompt_condense():
         | 
| 137 | 
            +
                _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                Chat History:
         | 
| 140 | 
            +
                {chat_history}
         | 
| 141 | 
            +
                Follow Up Input: {question}
         | 
| 142 | 
            +
                Standalone question:"""
         | 
| 143 | 
            +
                CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
         | 
| 144 | 
            +
                return CONDENSE_QUESTION_PROMPT
         | 
| 145 | 
            +
             | 
| 146 | 
            +
            def set_custom_prompt():
         | 
| 147 | 
            +
                """
         | 
| 148 | 
            +
                Prompt template for retrieval for each vectorstore
         | 
| 149 | 
            +
                """
         | 
| 150 | 
            +
             | 
| 151 | 
            +
             | 
| 152 | 
            +
                prompt_template = """<Instructions>
         | 
| 153 | 
            +
                Important:
         | 
| 154 | 
            +
                Answer with the facts listed in the list of sources below. If there isn't enough information below, say you don't know.
         | 
| 155 | 
            +
                If asking a clarifying question to the user would help, ask the question.
         | 
| 156 | 
            +
                ALWAYS return a "SOURCES" part in your answer, except for small-talk conversations.
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                Question: {question}
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                {context}
         | 
| 161 | 
            +
             | 
| 162 | 
            +
             | 
| 163 | 
            +
                Question: {question}
         | 
| 164 | 
            +
                Helpful Answer:
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                ---------------------------
         | 
| 167 | 
            +
                ---------------------------
         | 
| 168 | 
            +
                Sources:
         | 
| 169 | 
            +
                """
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
         | 
| 172 | 
            +
                return prompt
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            def create_chain(llm, prompt, CONDENSE_QUESTION_PROMPT, db):
         | 
| 175 | 
            +
                """
         | 
| 176 | 
            +
                Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database.
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations,
         | 
| 179 | 
            +
                and returns this  chain. The retriever is set up to return the top 3 results (k=3).
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                Args:
         | 
| 182 | 
            +
                    llm (any): The language model to be used in the RetrievalQA.
         | 
| 183 | 
            +
                    prompt (str): The prompt to be used in the chain type.
         | 
| 184 | 
            +
                    db (any): The database to be used as the retriever.
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                Returns:
         | 
| 187 | 
            +
                    ConversationalRetrievalChain: The initialized conversational chain.
         | 
| 188 | 
            +
                """
         | 
| 189 | 
            +
                memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', max_token_limit=1000)
         | 
| 190 | 
            +
                chain = ConversationalRetrievalChain.from_llm(
         | 
| 191 | 
            +
                    llm=llm,
         | 
| 192 | 
            +
                    chain_type="stuff",
         | 
| 193 | 
            +
                    retriever=db.as_retriever(search_kwargs={"k": 3}),
         | 
| 194 | 
            +
                    return_source_documents=True,
         | 
| 195 | 
            +
                    combine_docs_chain_kwargs={"prompt": prompt},
         | 
| 196 | 
            +
                    condense_question_prompt=CONDENSE_QUESTION_PROMPT,
         | 
| 197 | 
            +
                    memory=memory,
         | 
| 198 | 
            +
                )
         | 
| 199 | 
            +
                return chain
         | 
| 200 | 
            +
             | 
| 201 | 
            +
            def create_retrieval_qa_bot():
         | 
| 202 | 
            +
                if not os.path.exists(persist_dir):
         | 
| 203 | 
            +
                      raise FileNotFoundError(f"No directory found at {persist_dir}")
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                try:
         | 
| 206 | 
            +
                    llm = load_model()  # Assuming this function exists and works as expected
         | 
| 207 | 
            +
                except Exception as e:
         | 
| 208 | 
            +
                    raise Exception(f"Failed to load model: {str(e)}")
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                try:
         | 
| 211 | 
            +
                    prompt = set_custom_prompt()  # Assuming this function exists and works as expected
         | 
| 212 | 
            +
                except Exception as e:
         | 
| 213 | 
            +
                    raise Exception(f"Failed to get prompt: {str(e)}")
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                try:
         | 
| 216 | 
            +
                    CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()  # Assuming this function exists and works as expected
         | 
| 217 | 
            +
                except Exception as e:
         | 
| 218 | 
            +
                    raise Exception(f"Failed to get condense prompt: {str(e)}")
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                try:
         | 
| 221 | 
            +
                    db = create_vector_database()  # Assuming this function exists and works as expected
         | 
| 222 | 
            +
                except Exception as e:
         | 
| 223 | 
            +
                    raise Exception(f"Failed to get database: {str(e)}")
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                try:
         | 
| 226 | 
            +
                    qa = create_chain(
         | 
| 227 | 
            +
                        llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db
         | 
| 228 | 
            +
                    )  # Assuming this function exists and works as expected
         | 
| 229 | 
            +
                except Exception as e:
         | 
| 230 | 
            +
                    raise Exception(f"Failed to create retrieval QA chain: {str(e)}")
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                return qa
         | 
| 233 | 
            +
             | 
| 234 | 
            +
            def retrieve_bot_answer(query):
         | 
| 235 | 
            +
                """
         | 
| 236 | 
            +
                Retrieves the answer to a given query using a QA bot.
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                This function creates an instance of a QA bot, passes the query to it,
         | 
| 239 | 
            +
                and returns the bot's response.
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                Args:
         | 
| 242 | 
            +
                    query (str): The question to be answered by the QA bot.
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                Returns:
         | 
| 245 | 
            +
                    dict: The QA bot's response, typically a dictionary with response details.
         | 
| 246 | 
            +
                """
         | 
| 247 | 
            +
                qa_bot_instance = create_retrieval_qa_bot()
         | 
| 248 | 
            +
                bot_response = qa_bot_instance({"query": query})
         | 
| 249 | 
            +
                return bot_response
         | 
| 250 | 
            +
             | 
| 251 | 
            +
            import streamlit as st
         | 
| 252 | 
            +
            from your_module import load_model, set_custom_prompt, set_custom_prompt_condense, create_vector_database, retrieve_bot_answer
         | 
| 253 | 
            +
             | 
| 254 | 
            +
            def main():
         | 
| 255 | 
            +
                st.title("Docuverse")
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                # Upload files
         | 
| 258 | 
            +
                uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                if uploaded_files:
         | 
| 261 | 
            +
                    # Process uploaded files
         | 
| 262 | 
            +
                    for uploaded_file in uploaded_files:
         | 
| 263 | 
            +
                        st.write(f"Uploaded: {uploaded_file.name}")
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    st.write("Chat with the Document:")
         | 
| 266 | 
            +
                    query = st.text_input("Ask a question:")
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    if st.button("Get Answer"):
         | 
| 269 | 
            +
                        if query:
         | 
| 270 | 
            +
                            # Load model, set prompts, create vector database, and retrieve answer
         | 
| 271 | 
            +
                            try:
         | 
| 272 | 
            +
                                llm = load_model()
         | 
| 273 | 
            +
                                prompt = set_custom_prompt()
         | 
| 274 | 
            +
                                CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
         | 
| 275 | 
            +
                                db = create_vector_database()
         | 
| 276 | 
            +
                                response = retrieve_bot_answer(query)
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                                # Display bot response
         | 
| 279 | 
            +
                                st.write("Bot Response:")
         | 
| 280 | 
            +
                                st.write(response)
         | 
| 281 | 
            +
                            except Exception as e:
         | 
| 282 | 
            +
                                st.error(f"An error occurred: {str(e)}")
         | 
| 283 | 
            +
                        else:
         | 
| 284 | 
            +
                            st.warning("Please enter a question.")
         | 
| 285 | 
            +
             | 
| 286 | 
            +
            if __name__ == "__main__":
         | 
| 287 | 
            +
                main()
         | 
    	
        reqirements.rtf
    ADDED
    
    | @@ -0,0 +1,32 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {\rtf1\ansi\ansicpg1252\cocoartf2709
         | 
| 2 | 
            +
            \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fmodern\fcharset0 Courier;}
         | 
| 3 | 
            +
            {\colortbl;\red255\green255\blue255;\red0\green0\blue0;\red255\green255\blue255;\red255\green255\blue255;
         | 
| 4 | 
            +
            \red203\green203\blue202;\red202\green202\blue202;\red203\green203\blue202;}
         | 
| 5 | 
            +
            {\*\expandedcolortbl;;\cssrgb\c0\c0\c0;\cssrgb\c100000\c100000\c100000\c0;\cssrgb\c100000\c100000\c99956;
         | 
| 6 | 
            +
            \cssrgb\c83320\c83320\c83112;\cssrgb\c83229\c83229\c83125;\cssrgb\c83411\c83411\c83099;}
         | 
| 7 | 
            +
            \margl1440\margr1440\vieww11520\viewh8400\viewkind0
         | 
| 8 | 
            +
            \deftab720
         | 
| 9 | 
            +
            \pard\pardeftab720\partightenfactor0
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            \f0\fs28 \cf2 \cb3 \expnd0\expndtw0\kerning0
         | 
| 12 | 
            +
            \outl0\strokewidth0 \strokec4 langchain\
         | 
| 13 | 
            +
            PyPDF2\
         | 
| 14 | 
            +
            streamlit\
         | 
| 15 | 
            +
            #openai\
         | 
| 16 | 
            +
            faiss-cpu\
         | 
| 17 | 
            +
            \pard\pardeftab720\partightenfactor0
         | 
| 18 | 
            +
            \cf2 \strokec5 safetensors\strokec4 \
         | 
| 19 | 
            +
            \pard\pardeftab720\partightenfactor0
         | 
| 20 | 
            +
            \cf2 \strokec4 huggingface-hub\
         | 
| 21 | 
            +
            InstructorEmbedding\
         | 
| 22 | 
            +
            sentence-transformers\
         | 
| 23 | 
            +
            \pard\pardeftab720\partightenfactor0
         | 
| 24 | 
            +
            \cf2 \strokec5 torch\
         | 
| 25 | 
            +
            sentence_transformers\
         | 
| 26 | 
            +
            einops\strokec4 \
         | 
| 27 | 
            +
            \pard\pardeftab720\partightenfactor0
         | 
| 28 | 
            +
            \cf2 \strokec5 bitsandbytes\
         | 
| 29 | 
            +
            accelerate\
         | 
| 30 | 
            +
            peft\cb1 \strokec6 \
         | 
| 31 | 
            +
            \cb3 \strokec7 transformers\cb1 \strokec6 \
         | 
| 32 | 
            +
            }
         |