# Copyright (c) OpenMMLab. All rights reserved. import copy import os from argparse import ArgumentParser from multiprocessing import Pool import matplotlib.pyplot as plt import numpy as np from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval def makeplot(rs, ps, outDir, class_name, iou_type): cs = np.vstack([ np.ones((2, 3)), np.array([0.31, 0.51, 0.74]), np.array([0.75, 0.31, 0.30]), np.array([0.36, 0.90, 0.38]), np.array([0.50, 0.39, 0.64]), np.array([1, 0.6, 0]), ]) areaNames = ['allarea', 'small', 'medium', 'large'] types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN'] for i in range(len(areaNames)): area_ps = ps[..., i, 0] figure_title = iou_type + '-' + class_name + '-' + areaNames[i] aps = [ps_.mean() for ps_ in area_ps] ps_curve = [ ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps ] ps_curve.insert(0, np.zeros(ps_curve[0].shape)) fig = plt.figure() ax = plt.subplot(111) for k in range(len(types)): ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5) ax.fill_between( rs, ps_curve[k], ps_curve[k + 1], color=cs[k], label=str(f'[{aps[k]:.3f}]' + types[k]), ) plt.xlabel('recall') plt.ylabel('precision') plt.xlim(0, 1.0) plt.ylim(0, 1.0) plt.title(figure_title) plt.legend() # plt.show() fig.savefig(outDir + f'/{figure_title}.png') plt.close(fig) def autolabel(ax, rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() if height > 0 and height <= 1: # for percent values text_label = '{:2.0f}'.format(height * 100) else: text_label = '{:2.0f}'.format(height) ax.annotate( text_label, xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords='offset points', ha='center', va='bottom', fontsize='x-small', ) def makebarplot(rs, ps, outDir, class_name, iou_type): areaNames = ['allarea', 'small', 'medium', 'large'] types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN'] fig, ax = plt.subplots() x = np.arange(len(areaNames)) # the areaNames locations width = 0.60 # the width of the bars rects_list = [] figure_title = iou_type + '-' + class_name + '-' + 'ap bar plot' for i in range(len(types) - 1): type_ps = ps[i, ..., 0] aps = [ps_.mean() for ps_ in type_ps.T] rects_list.append( ax.bar( x - width / 2 + (i + 1) * width / len(types), aps, width / len(types), label=types[i], )) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Mean Average Precision (mAP)') ax.set_title(figure_title) ax.set_xticks(x) ax.set_xticklabels(areaNames) ax.legend() # Add score texts over bars for rects in rects_list: autolabel(ax, rects) # Save plot fig.savefig(outDir + f'/{figure_title}.png') plt.close(fig) def get_gt_area_group_numbers(cocoEval): areaRng = cocoEval.params.areaRng areaRngStr = [str(aRng) for aRng in areaRng] areaRngLbl = cocoEval.params.areaRngLbl areaRngStr2areaRngLbl = dict(zip(areaRngStr, areaRngLbl)) areaRngLbl2Number = dict.fromkeys(areaRngLbl, 0) for evalImg in cocoEval.evalImgs: if evalImg: for gtIgnore in evalImg['gtIgnore']: if not gtIgnore: aRngLbl = areaRngStr2areaRngLbl[str(evalImg['aRng'])] areaRngLbl2Number[aRngLbl] += 1 return areaRngLbl2Number def make_gt_area_group_numbers_plot(cocoEval, outDir, verbose=True): areaRngLbl2Number = get_gt_area_group_numbers(cocoEval) areaRngLbl = areaRngLbl2Number.keys() if verbose: print('number of annotations per area group:', areaRngLbl2Number) # Init figure fig, ax = plt.subplots() x = np.arange(len(areaRngLbl)) # the areaNames locations width = 0.60 # the width of the bars figure_title = 'number of annotations per area group' rects = ax.bar(x, areaRngLbl2Number.values(), width) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Number of annotations') ax.set_title(figure_title) ax.set_xticks(x) ax.set_xticklabels(areaRngLbl) # Add score texts over bars autolabel(ax, rects) # Save plot fig.tight_layout() fig.savefig(outDir + f'/{figure_title}.png') plt.close(fig) def make_gt_area_histogram_plot(cocoEval, outDir): n_bins = 100 areas = [ann['area'] for ann in cocoEval.cocoGt.anns.values()] # init figure figure_title = 'gt annotation areas histogram plot' fig, ax = plt.subplots() # Set the number of bins ax.hist(np.sqrt(areas), bins=n_bins) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_xlabel('Squareroot Area') ax.set_ylabel('Number of annotations') ax.set_title(figure_title) # Save plot fig.tight_layout() fig.savefig(outDir + f'/{figure_title}.png') plt.close(fig) def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type, areas=None): nm = cocoGt.loadCats(catId)[0] print(f'--------------analyzing {k + 1}-{nm["name"]}---------------') ps_ = {} dt = copy.deepcopy(cocoDt) nm = cocoGt.loadCats(catId)[0] imgIds = cocoGt.getImgIds() dt_anns = dt.dataset['annotations'] select_dt_anns = [] for ann in dt_anns: if ann['category_id'] == catId: select_dt_anns.append(ann) dt.dataset['annotations'] = select_dt_anns dt.createIndex() # compute precision but ignore superclass confusion gt = copy.deepcopy(cocoGt) child_catIds = gt.getCatIds(supNms=[nm['supercategory']]) for idx, ann in enumerate(gt.dataset['annotations']): if ann['category_id'] in child_catIds and ann['category_id'] != catId: gt.dataset['annotations'][idx]['ignore'] = 1 gt.dataset['annotations'][idx]['iscrowd'] = 1 gt.dataset['annotations'][idx]['category_id'] = catId cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) cocoEval.params.imgIds = imgIds cocoEval.params.maxDets = [100] cocoEval.params.iouThrs = [0.1] cocoEval.params.useCats = 1 if areas: cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], [areas[0], areas[1]], [areas[1], areas[2]]] cocoEval.evaluate() cocoEval.accumulate() ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :] ps_['ps_supercategory'] = ps_supercategory # compute precision but ignore any class confusion gt = copy.deepcopy(cocoGt) for idx, ann in enumerate(gt.dataset['annotations']): if ann['category_id'] != catId: gt.dataset['annotations'][idx]['ignore'] = 1 gt.dataset['annotations'][idx]['iscrowd'] = 1 gt.dataset['annotations'][idx]['category_id'] = catId cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) cocoEval.params.imgIds = imgIds cocoEval.params.maxDets = [100] cocoEval.params.iouThrs = [0.1] cocoEval.params.useCats = 1 if areas: cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], [areas[0], areas[1]], [areas[1], areas[2]]] cocoEval.evaluate() cocoEval.accumulate() ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :] ps_['ps_allcategory'] = ps_allcategory return k, ps_ def analyze_results(res_file, ann_file, res_types, out_dir, extraplots=None, areas=None): for res_type in res_types: assert res_type in ['bbox', 'segm'] if areas: assert len(areas) == 3, '3 integers should be specified as areas, \ representing 3 area regions' directory = os.path.dirname(out_dir + '/') if not os.path.exists(directory): print(f'-------------create {out_dir}-----------------') os.makedirs(directory) cocoGt = COCO(ann_file) cocoDt = cocoGt.loadRes(res_file) imgIds = cocoGt.getImgIds() for res_type in res_types: res_out_dir = out_dir + '/' + res_type + '/' res_directory = os.path.dirname(res_out_dir) if not os.path.exists(res_directory): print(f'-------------create {res_out_dir}-----------------') os.makedirs(res_directory) iou_type = res_type cocoEval = COCOeval( copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type) cocoEval.params.imgIds = imgIds cocoEval.params.iouThrs = [0.75, 0.5, 0.1] cocoEval.params.maxDets = [100] if areas: cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]], [areas[0], areas[1]], [areas[1], areas[2]]] cocoEval.evaluate() cocoEval.accumulate() ps = cocoEval.eval['precision'] ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))]) catIds = cocoGt.getCatIds() recThrs = cocoEval.params.recThrs with Pool(processes=48) as pool: args = [(k, cocoDt, cocoGt, catId, iou_type, areas) for k, catId in enumerate(catIds)] analyze_results = pool.starmap(analyze_individual_category, args) for k, catId in enumerate(catIds): nm = cocoGt.loadCats(catId)[0] print(f'--------------saving {k + 1}-{nm["name"]}---------------') analyze_result = analyze_results[k] assert k == analyze_result[0] ps_supercategory = analyze_result[1]['ps_supercategory'] ps_allcategory = analyze_result[1]['ps_allcategory'] # compute precision but ignore superclass confusion ps[3, :, k, :, :] = ps_supercategory # compute precision but ignore any class confusion ps[4, :, k, :, :] = ps_allcategory # fill in background and false negative errors and plot ps[ps == -1] = 0 ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0 ps[6, :, k, :, :] = 1.0 makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type) if extraplots: makebarplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type) makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type) if extraplots: makebarplot(recThrs, ps, res_out_dir, 'allclass', iou_type) make_gt_area_group_numbers_plot( cocoEval=cocoEval, outDir=res_out_dir, verbose=True) make_gt_area_histogram_plot(cocoEval=cocoEval, outDir=res_out_dir) def main(): parser = ArgumentParser(description='COCO Error Analysis Tool') parser.add_argument('result', help='result file (json format) path') parser.add_argument('out_dir', help='dir to save analyze result images') parser.add_argument( '--ann', default='data/coco/annotations/instances_val2017.json', help='annotation file path') parser.add_argument( '--types', type=str, nargs='+', default=['bbox'], help='result types') parser.add_argument( '--extraplots', action='store_true', help='export extra bar/stat plots') parser.add_argument( '--areas', type=int, nargs='+', default=[1024, 9216, 10000000000], help='area regions') args = parser.parse_args() analyze_results( args.result, args.ann, args.types, out_dir=args.out_dir, extraplots=args.extraplots, areas=args.areas) if __name__ == '__main__': main()