|
|
|
import copy |
|
|
|
import numpy as np |
|
|
|
from mmpose.datasets.pipelines import Compose |
|
|
|
|
|
def _check_flip(origin_imgs, result_imgs): |
|
"""Check if the origin_imgs are flipped correctly.""" |
|
h, w, c = origin_imgs.shape |
|
for i in range(h): |
|
for j in range(w): |
|
for k in range(c): |
|
if result_imgs[i, j, k] != origin_imgs[i, w - 1 - j, k]: |
|
return False |
|
return True |
|
|
|
|
|
def get_sample_data(): |
|
ann_info = {} |
|
ann_info['image_size'] = np.array([256, 256]) |
|
ann_info['heatmap_size'] = np.array([64, 64, 64]) |
|
ann_info['heatmap3d_depth_bound'] = 400.0 |
|
ann_info['heatmap_size_root'] = 64 |
|
ann_info['root_depth_bound'] = 400.0 |
|
ann_info['num_joints'] = 42 |
|
ann_info['joint_weights'] = np.ones((ann_info['num_joints'], 1), |
|
dtype=np.float32) |
|
ann_info['use_different_joint_weights'] = False |
|
ann_info['flip_pairs'] = [[i, 21 + i] for i in range(21)] |
|
ann_info['inference_channel'] = list(range(42)) |
|
ann_info['num_output_channels'] = 42 |
|
ann_info['dataset_channel'] = list(range(42)) |
|
|
|
results = { |
|
'image_file': 'tests/data/interhand2.6m/image69148.jpg', |
|
'center': np.asarray([200, 200], dtype=np.float32), |
|
'scale': 1.0, |
|
'rotation': 0, |
|
'joints_3d': np.zeros([42, 3], dtype=np.float32), |
|
'joints_3d_visible': np.ones([42, 3], dtype=np.float32), |
|
'hand_type': np.asarray([1, 0], dtype=np.float32), |
|
'hand_type_valid': 1, |
|
'rel_root_depth': 50.0, |
|
'rel_root_valid': 1, |
|
'ann_info': ann_info |
|
} |
|
return results |
|
|
|
|
|
def test_hand_transforms(): |
|
results = get_sample_data() |
|
|
|
|
|
pipeline = Compose([dict(type='LoadImageFromFile')]) |
|
results = pipeline(results) |
|
|
|
|
|
pipeline = Compose([dict(type='HandRandomFlip', flip_prob=1)]) |
|
results_flip = pipeline(copy.deepcopy(results)) |
|
assert _check_flip(results['img'], results_flip['img']) |
|
|
|
|
|
pipeline = Compose([dict(type='HandGenerateRelDepthTarget')]) |
|
results_depth = pipeline(copy.deepcopy(results)) |
|
assert results_depth['target'].shape == (1, ) |
|
assert results_depth['target_weight'].shape == (1, ) |
|
|