File size: 6,710 Bytes
3bbb319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp

import numpy as np
import pytest
from mmcv import bgr2rgb, build_from_cfg

from mmpose.datasets import PIPELINES
from mmpose.datasets.pipelines import Compose


def check_keys_equal(result_keys, target_keys):
    """Check if all elements in target_keys is in result_keys."""
    return set(target_keys) == set(result_keys)


def check_keys_contain(result_keys, target_keys):
    """Check if elements in target_keys is in result_keys."""
    return set(target_keys).issubset(set(result_keys))


def test_compose():
    with pytest.raises(TypeError):
        # transform must be callable or a dict
        Compose('LoadImageFromFile')

    target_keys = ['img', 'img_rename', 'img_metas']

    # test Compose given a data pipeline
    img = np.random.randn(256, 256, 3)
    results = dict(img=img, img_file='test_image.png')
    test_pipeline = [
        dict(
            type='Collect',
            keys=['img', ('img', 'img_rename')],
            meta_keys=['img_file'])
    ]
    compose = Compose(test_pipeline)
    compose_results = compose(results)
    assert check_keys_equal(compose_results.keys(), target_keys)
    assert check_keys_equal(compose_results['img_metas'].data.keys(),
                            ['img_file'])

    # test Compose when forward data is None
    results = None

    class ExamplePipeline:

        def __call__(self, results):
            return None

    nonePipeline = ExamplePipeline()
    test_pipeline = [nonePipeline]
    compose = Compose(test_pipeline)
    compose_results = compose(results)
    assert compose_results is None

    assert repr(compose) == compose.__class__.__name__ + \
        f'(\n    {nonePipeline}\n)'


def test_load_image_from_file():
    # Define simple pipeline
    load = dict(type='LoadImageFromFile')
    load = build_from_cfg(load, PIPELINES)

    data_prefix = 'tests/data/coco/'
    image_file = osp.join(data_prefix, '00000000078.jpg')
    results = dict(image_file=image_file)

    # load an image that doesn't exist
    with pytest.raises(FileNotFoundError):
        results = load(results)

    # mormal loading
    image_file = osp.join(data_prefix, '000000000785.jpg')
    results = dict(image_file=image_file)
    results = load(results)
    assert results['img'].shape == (425, 640, 3)

    # load a single image from a list
    image_file = [osp.join(data_prefix, '000000000785.jpg')]
    results = dict(image_file=image_file)
    results = load(results)
    assert len(results['img']) == 1

    # test loading multi images from a list
    image_file = [
        osp.join(data_prefix, '000000000785.jpg'),
        osp.join(data_prefix, '00000004008.jpg'),
    ]
    results = dict(image_file=image_file)

    with pytest.raises(FileNotFoundError):
        results = load(results)

    image_file = [
        osp.join(data_prefix, '000000000785.jpg'),
        osp.join(data_prefix, '000000040083.jpg'),
    ]
    results = dict(image_file=image_file)

    results = load(results)
    assert len(results['img']) == 2

    # manually set image outside the pipeline
    img = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
    results = load(dict(img=img))
    np.testing.assert_equal(results['img'], bgr2rgb(img))

    imgs = np.random.randint(0, 255, (2, 32, 32, 3), dtype=np.uint8)
    desired = np.concatenate([bgr2rgb(img) for img in imgs], axis=0)
    results = load(dict(img=imgs))
    np.testing.assert_equal(results['img'], desired)

    # neither 'image_file' or valid 'img' is given
    results = dict()
    with pytest.raises(KeyError):
        _ = load(results)

    results = dict(img=np.random.randint(0, 255, (32, 32), dtype=np.uint8))
    with pytest.raises(ValueError):
        _ = load(results)


def test_albu_transform():
    data_prefix = 'tests/data/coco/'
    results = dict(image_file=osp.join(data_prefix, '000000000785.jpg'))

    # Define simple pipeline
    load = dict(type='LoadImageFromFile')
    load = build_from_cfg(load, PIPELINES)

    albu_transform = dict(
        type='Albumentation',
        transforms=[
            dict(type='RandomBrightnessContrast', p=0.2),
            dict(type='ToFloat')
        ])
    albu_transform = build_from_cfg(albu_transform, PIPELINES)

    # Execute transforms
    results = load(results)

    results = albu_transform(results)

    assert results['img'].dtype == np.float32


def test_photometric_distortion_transform():
    data_prefix = 'tests/data/coco/'
    results = dict(image_file=osp.join(data_prefix, '000000000785.jpg'))

    # Define simple pipeline
    load = dict(type='LoadImageFromFile')
    load = build_from_cfg(load, PIPELINES)

    photo_transform = dict(type='PhotometricDistortion')
    photo_transform = build_from_cfg(photo_transform, PIPELINES)

    # Execute transforms
    results = load(results)

    results = photo_transform(results)

    assert results['img'].dtype == np.uint8


def test_multitask_gather():
    ann_info = dict(
        image_size=np.array([256, 256]),
        heatmap_size=np.array([64, 64]),
        num_joints=17,
        joint_weights=np.ones((17, 1), dtype=np.float32),
        use_different_joint_weights=False)

    results = dict(
        joints_3d=np.zeros([17, 3]),
        joints_3d_visible=np.ones([17, 3]),
        ann_info=ann_info)

    pipeline_list = [[dict(type='TopDownGenerateTarget', sigma=2)],
                     [dict(type='TopDownGenerateTargetRegression')]]
    pipeline = dict(
        type='MultitaskGatherTarget',
        pipeline_list=pipeline_list,
        pipeline_indices=[0, 1, 0],
    )
    pipeline = build_from_cfg(pipeline, PIPELINES)

    results = pipeline(results)
    target = results['target']
    target_weight = results['target_weight']
    assert isinstance(target, list)
    assert isinstance(target_weight, list)
    assert target[0].shape == (17, 64, 64)
    assert target_weight[0].shape == (17, 1)
    assert target[1].shape == (17, 2)
    assert target_weight[1].shape == (17, 2)
    assert target[2].shape == (17, 64, 64)
    assert target_weight[2].shape == (17, 1)


def test_rename_keys():
    results = dict(
        joints_3d=np.ones([17, 3]), joints_3d_visible=np.ones([17, 3]))
    pipeline = dict(
        type='RenameKeys',
        key_pairs=[('joints_3d', 'target'),
                   ('joints_3d_visible', 'target_weight')])
    pipeline = build_from_cfg(pipeline, PIPELINES)
    results = pipeline(results)
    assert 'joints_3d' not in results
    assert 'joints_3d_visible' not in results
    assert 'target' in results
    assert 'target_weight' in results
    assert results['target'].shape == (17, 3)
    assert results['target_weight'].shape == (17, 3)