|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <neural-graphics-primitives/adam_optimizer.h> |
|
#include <neural-graphics-primitives/common_device.cuh> |
|
#include <neural-graphics-primitives/common.h> |
|
#include <neural-graphics-primitives/envmap.cuh> |
|
#include <neural-graphics-primitives/marching_cubes.h> |
|
#include <neural-graphics-primitives/nerf_loader.h> |
|
#include <neural-graphics-primitives/nerf_network.h> |
|
#include <neural-graphics-primitives/render_buffer.h> |
|
#include <neural-graphics-primitives/testbed.h> |
|
#include <neural-graphics-primitives/trainable_buffer.cuh> |
|
#include <neural-graphics-primitives/triangle_octree.cuh> |
|
|
|
#include <tiny-cuda-nn/encodings/grid.h> |
|
#include <tiny-cuda-nn/loss.h> |
|
#include <tiny-cuda-nn/network_with_input_encoding.h> |
|
#include <tiny-cuda-nn/network.h> |
|
#include <tiny-cuda-nn/optimizer.h> |
|
#include <tiny-cuda-nn/trainer.h> |
|
|
|
#include <filesystem/directory.h> |
|
#include <filesystem/path.h> |
|
|
|
#ifdef copysign |
|
#undef copysign |
|
#endif |
|
|
|
using namespace Eigen; |
|
using namespace tcnn; |
|
namespace fs = filesystem; |
|
|
|
NGP_NAMESPACE_BEGIN |
|
|
|
inline constexpr __device__ float NERF_RENDERING_NEAR_DISTANCE() { return 0.05f; } |
|
inline constexpr __device__ uint32_t NERF_STEPS() { return 1024; } |
|
inline constexpr __device__ uint32_t NERF_CASCADES() { return 8; } |
|
|
|
inline constexpr __device__ float SQRT3() { return 1.73205080757f; } |
|
inline constexpr __device__ float STEPSIZE() { return (SQRT3() / NERF_STEPS()); } |
|
inline constexpr __device__ float MIN_CONE_STEPSIZE() { return STEPSIZE(); } |
|
|
|
inline constexpr __device__ float MAX_CONE_STEPSIZE() { return STEPSIZE() * (1<<(NERF_CASCADES()-1)) * NERF_STEPS() / NERF_GRIDSIZE(); } |
|
|
|
|
|
|
|
inline constexpr __device__ uint32_t N_MAX_RANDOM_SAMPLES_PER_RAY() { return 8; } |
|
|
|
|
|
inline constexpr __device__ float NERF_MIN_OPTICAL_THICKNESS() { return 0.01f; } |
|
|
|
static constexpr uint32_t MARCH_ITER = 10000; |
|
|
|
static constexpr uint32_t MIN_STEPS_INBETWEEN_COMPACTION = 1; |
|
static constexpr uint32_t MAX_STEPS_INBETWEEN_COMPACTION = 8; |
|
|
|
Testbed::NetworkDims Testbed::network_dims_nerf() const { |
|
NetworkDims dims; |
|
dims.n_input = sizeof(NerfCoordinate) / sizeof(float); |
|
dims.n_output = 4; |
|
dims.n_pos = sizeof(NerfPosition) / sizeof(float); |
|
return dims; |
|
} |
|
|
|
inline __host__ __device__ uint32_t grid_mip_offset(uint32_t mip) { |
|
return (NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_GRIDSIZE()) * mip; |
|
} |
|
|
|
inline __host__ __device__ float calc_cone_angle(float cosine, const Eigen::Vector2f& focal_length, float cone_angle_constant) { |
|
|
|
|
|
|
|
|
|
|
|
return cone_angle_constant; |
|
} |
|
|
|
inline __host__ __device__ float calc_dt(float t, float cone_angle) { |
|
return tcnn::clamp(t*cone_angle, MIN_CONE_STEPSIZE(), MAX_CONE_STEPSIZE()); |
|
} |
|
|
|
struct LossAndGradient { |
|
Eigen::Array3f loss; |
|
Eigen::Array3f gradient; |
|
|
|
__host__ __device__ LossAndGradient operator*(float scalar) { |
|
return {loss * scalar, gradient * scalar}; |
|
} |
|
|
|
__host__ __device__ LossAndGradient operator/(float scalar) { |
|
return {loss / scalar, gradient / scalar}; |
|
} |
|
}; |
|
|
|
inline __device__ Array3f copysign(const Array3f& a, const Array3f& b) { |
|
return { |
|
copysignf(a.x(), b.x()), |
|
copysignf(a.y(), b.y()), |
|
copysignf(a.z(), b.z()), |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient l2_loss(const Array3f& target, const Array3f& prediction) { |
|
Array3f difference = prediction - target; |
|
return { |
|
difference * difference, |
|
2.0f * difference |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient relative_l2_loss(const Array3f& target, const Array3f& prediction) { |
|
Array3f difference = prediction - target; |
|
Array3f factor = (prediction * prediction + Array3f::Constant(1e-2f)).inverse(); |
|
return { |
|
difference * difference * factor, |
|
2.0f * difference * factor |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient l1_loss(const Array3f& target, const Array3f& prediction) { |
|
Array3f difference = prediction - target; |
|
return { |
|
difference.abs(), |
|
copysign(Array3f::Ones(), difference), |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient huber_loss(const Array3f& target, const Array3f& prediction, float alpha = 1) { |
|
Array3f difference = prediction - target; |
|
Array3f abs_diff = difference.abs(); |
|
Array3f square = 0.5f/alpha * difference * difference; |
|
return { |
|
{ |
|
abs_diff.x() > alpha ? (abs_diff.x() - 0.5f * alpha) : square.x(), |
|
abs_diff.y() > alpha ? (abs_diff.y() - 0.5f * alpha) : square.y(), |
|
abs_diff.z() > alpha ? (abs_diff.z() - 0.5f * alpha) : square.z(), |
|
}, |
|
{ |
|
abs_diff.x() > alpha ? (difference.x() > 0 ? 1.0f : -1.0f) : (difference.x() / alpha), |
|
abs_diff.y() > alpha ? (difference.y() > 0 ? 1.0f : -1.0f) : (difference.y() / alpha), |
|
abs_diff.z() > alpha ? (difference.z() > 0 ? 1.0f : -1.0f) : (difference.z() / alpha), |
|
}, |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient log_l1_loss(const Array3f& target, const Array3f& prediction) { |
|
Array3f difference = prediction - target; |
|
Array3f divisor = difference.abs() + Array3f::Ones(); |
|
return { |
|
divisor.log(), |
|
copysign(divisor.inverse(), difference), |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient smape_loss(const Array3f& target, const Array3f& prediction) { |
|
Array3f difference = prediction - target; |
|
Array3f factor = (0.5f * (prediction.abs() + target.abs()) + Array3f::Constant(1e-2f)).inverse(); |
|
return { |
|
difference.abs() * factor, |
|
copysign(factor, difference), |
|
}; |
|
} |
|
|
|
inline __device__ LossAndGradient mape_loss(const Array3f& target, const Array3f& prediction) { |
|
Array3f difference = prediction - target; |
|
Array3f factor = (prediction.abs() + Array3f::Constant(1e-2f)).inverse(); |
|
return { |
|
difference.abs() * factor, |
|
copysign(factor, difference), |
|
}; |
|
} |
|
|
|
inline __device__ float distance_to_next_voxel(const Vector3f& pos, const Vector3f& dir, const Vector3f& idir, uint32_t res) { |
|
Vector3f p = res * pos; |
|
float tx = (floorf(p.x() + 0.5f + 0.5f * sign(dir.x())) - p.x()) * idir.x(); |
|
float ty = (floorf(p.y() + 0.5f + 0.5f * sign(dir.y())) - p.y()) * idir.y(); |
|
float tz = (floorf(p.z() + 0.5f + 0.5f * sign(dir.z())) - p.z()) * idir.z(); |
|
float t = min(min(tx, ty), tz); |
|
|
|
return fmaxf(t / res, 0.0f); |
|
} |
|
|
|
inline __device__ float advance_to_next_voxel(float t, float cone_angle, const Vector3f& pos, const Vector3f& dir, const Vector3f& idir, uint32_t res) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
float t_target = t + distance_to_next_voxel(pos, dir, idir, res); |
|
do { |
|
t += calc_dt(t, cone_angle); |
|
} while (t < t_target); |
|
return t; |
|
} |
|
|
|
__device__ float network_to_rgb(float val, ENerfActivation activation) { |
|
switch (activation) { |
|
case ENerfActivation::None: return val; |
|
case ENerfActivation::ReLU: return val > 0.0f ? val : 0.0f; |
|
case ENerfActivation::Logistic: return tcnn::logistic(val); |
|
case ENerfActivation::Exponential: return __expf(tcnn::clamp(val, -10.0f, 10.0f)); |
|
default: assert(false); |
|
} |
|
return 0.0f; |
|
} |
|
|
|
__device__ float network_to_rgb_derivative(float val, ENerfActivation activation) { |
|
switch (activation) { |
|
case ENerfActivation::None: return 1.0f; |
|
case ENerfActivation::ReLU: return val > 0.0f ? 1.0f : 0.0f; |
|
case ENerfActivation::Logistic: { float density = tcnn::logistic(val); return density * (1 - density); }; |
|
case ENerfActivation::Exponential: return __expf(tcnn::clamp(val, -10.0f, 10.0f)); |
|
default: assert(false); |
|
} |
|
return 0.0f; |
|
} |
|
|
|
__device__ float network_to_density(float val, ENerfActivation activation) { |
|
switch (activation) { |
|
case ENerfActivation::None: return val; |
|
case ENerfActivation::ReLU: return val > 0.0f ? val : 0.0f; |
|
case ENerfActivation::Logistic: return tcnn::logistic(val); |
|
case ENerfActivation::Exponential: return __expf(val); |
|
default: assert(false); |
|
} |
|
return 0.0f; |
|
} |
|
|
|
__device__ float network_to_density_derivative(float val, ENerfActivation activation) { |
|
switch (activation) { |
|
case ENerfActivation::None: return 1.0f; |
|
case ENerfActivation::ReLU: return val > 0.0f ? 1.0f : 0.0f; |
|
case ENerfActivation::Logistic: { float density = tcnn::logistic(val); return density * (1 - density); }; |
|
case ENerfActivation::Exponential: return __expf(tcnn::clamp(val, -15.0f, 15.0f)); |
|
default: assert(false); |
|
} |
|
return 0.0f; |
|
} |
|
|
|
__device__ Array3f network_to_rgb(const tcnn::vector_t<tcnn::network_precision_t, 4>& local_network_output, ENerfActivation activation) { |
|
return { |
|
network_to_rgb(float(local_network_output[0]), activation), |
|
network_to_rgb(float(local_network_output[1]), activation), |
|
network_to_rgb(float(local_network_output[2]), activation) |
|
}; |
|
} |
|
|
|
__device__ Vector3f warp_position(const Vector3f& pos, const BoundingBox& aabb) { |
|
|
|
|
|
|
|
return aabb.relative_pos(pos); |
|
} |
|
|
|
__device__ Vector3f unwarp_position(const Vector3f& pos, const BoundingBox& aabb) { |
|
|
|
|
|
|
|
return aabb.min + pos.cwiseProduct(aabb.diag()); |
|
} |
|
|
|
__device__ Vector3f unwarp_position_derivative(const Vector3f& pos, const BoundingBox& aabb) { |
|
|
|
|
|
|
|
return aabb.diag(); |
|
} |
|
|
|
__device__ Vector3f warp_position_derivative(const Vector3f& pos, const BoundingBox& aabb) { |
|
return unwarp_position_derivative(pos, aabb).cwiseInverse(); |
|
} |
|
|
|
__host__ __device__ Vector3f warp_direction(const Vector3f& dir) { |
|
return (dir + Vector3f::Ones()) * 0.5f; |
|
} |
|
|
|
__device__ Vector3f unwarp_direction(const Vector3f& dir) { |
|
return dir * 2.0f - Vector3f::Ones(); |
|
} |
|
|
|
__device__ Vector3f warp_direction_derivative(const Vector3f& dir) { |
|
return Vector3f::Constant(0.5f); |
|
} |
|
|
|
__device__ Vector3f unwarp_direction_derivative(const Vector3f& dir) { |
|
return Vector3f::Constant(2.0f); |
|
} |
|
|
|
__device__ float warp_dt(float dt) { |
|
float max_stepsize = MIN_CONE_STEPSIZE() * (1<<(NERF_CASCADES()-1)); |
|
return (dt - MIN_CONE_STEPSIZE()) / (max_stepsize - MIN_CONE_STEPSIZE()); |
|
} |
|
|
|
__device__ float unwarp_dt(float dt) { |
|
float max_stepsize = MIN_CONE_STEPSIZE() * (1<<(NERF_CASCADES()-1)); |
|
return dt * (max_stepsize - MIN_CONE_STEPSIZE()) + MIN_CONE_STEPSIZE(); |
|
} |
|
|
|
__device__ uint32_t cascaded_grid_idx_at(Vector3f pos, uint32_t mip) { |
|
float mip_scale = scalbnf(1.0f, -mip); |
|
pos -= Vector3f::Constant(0.5f); |
|
pos *= mip_scale; |
|
pos += Vector3f::Constant(0.5f); |
|
|
|
Vector3i i = (pos * NERF_GRIDSIZE()).cast<int>(); |
|
|
|
if (i.x() < -1 || i.x() > NERF_GRIDSIZE() || i.y() < -1 || i.y() > NERF_GRIDSIZE() || i.z() < -1 || i.z() > NERF_GRIDSIZE()) { |
|
printf("WTF %d %d %d\n", i.x(), i.y(), i.z()); |
|
} |
|
|
|
uint32_t idx = tcnn::morton3D( |
|
tcnn::clamp(i.x(), 0, (int)NERF_GRIDSIZE()-1), |
|
tcnn::clamp(i.y(), 0, (int)NERF_GRIDSIZE()-1), |
|
tcnn::clamp(i.z(), 0, (int)NERF_GRIDSIZE()-1) |
|
); |
|
|
|
return idx; |
|
} |
|
|
|
__device__ bool density_grid_occupied_at(const Vector3f& pos, const uint8_t* density_grid_bitfield, uint32_t mip) { |
|
uint32_t idx = cascaded_grid_idx_at(pos, mip); |
|
return density_grid_bitfield[idx/8+grid_mip_offset(mip)/8] & (1<<(idx%8)); |
|
} |
|
|
|
__device__ float cascaded_grid_at(Vector3f pos, const float* cascaded_grid, uint32_t mip) { |
|
uint32_t idx = cascaded_grid_idx_at(pos, mip); |
|
return cascaded_grid[idx+grid_mip_offset(mip)]; |
|
} |
|
|
|
__device__ float& cascaded_grid_at(Vector3f pos, float* cascaded_grid, uint32_t mip) { |
|
uint32_t idx = cascaded_grid_idx_at(pos, mip); |
|
return cascaded_grid[idx+grid_mip_offset(mip)]; |
|
} |
|
|
|
__global__ void extract_srgb_with_activation(const uint32_t n_elements, const uint32_t rgb_stride, const float* __restrict__ rgbd, float* __restrict__ rgb, ENerfActivation rgb_activation, bool from_linear) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
const uint32_t elem_idx = i / 3; |
|
const uint32_t dim_idx = i - elem_idx * 3; |
|
|
|
float c = network_to_rgb(rgbd[elem_idx*4 + dim_idx], rgb_activation); |
|
if (from_linear) { |
|
c = linear_to_srgb(c); |
|
} |
|
|
|
rgb[elem_idx*rgb_stride + dim_idx] = c; |
|
} |
|
|
|
__global__ void mark_untrained_density_grid(const uint32_t n_elements, float* __restrict__ grid_out, |
|
const uint32_t n_training_images, |
|
const TrainingImageMetadata* __restrict__ metadata, |
|
const TrainingXForm* training_xforms, |
|
bool clear_visible_voxels |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
uint32_t level = i / (NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()); |
|
uint32_t pos_idx = i % (NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()); |
|
|
|
uint32_t x = tcnn::morton3D_invert(pos_idx>>0); |
|
uint32_t y = tcnn::morton3D_invert(pos_idx>>1); |
|
uint32_t z = tcnn::morton3D_invert(pos_idx>>2); |
|
|
|
Vector3f pos = ((Vector3f{(float)x+0.5f, (float)y+0.5f, (float)z+0.5f}) / NERF_GRIDSIZE() - Vector3f::Constant(0.5f)) * scalbnf(1.0f, level) + Vector3f::Constant(0.5f); |
|
float voxel_radius = 0.5f*SQRT3()*scalbnf(1.0f, level) / NERF_GRIDSIZE(); |
|
int count=0; |
|
for (uint32_t j=0; j < n_training_images; ++j) { |
|
if (metadata[j].lens.mode == ELensMode::FTheta || metadata[j].lens.mode == ELensMode::LatLong) { |
|
|
|
count++; |
|
break; |
|
} |
|
float half_resx = metadata[j].resolution.x() * 0.5f; |
|
float half_resy = metadata[j].resolution.y() * 0.5f; |
|
Matrix<float, 3, 4> xform = training_xforms[j].start; |
|
Vector3f ploc = pos - xform.col(3); |
|
float x = ploc.dot(xform.col(0)); |
|
float y = ploc.dot(xform.col(1)); |
|
float z = ploc.dot(xform.col(2)); |
|
if (z > 0.f) { |
|
auto focal = metadata[j].focal_length; |
|
|
|
if (fabsf(x) - voxel_radius < z / focal.x() * half_resx && fabsf(y) - voxel_radius < z / focal.y() * half_resy) { |
|
count++; |
|
if (count > 0) break; |
|
} |
|
} |
|
} |
|
|
|
if (clear_visible_voxels || (grid_out[i] < 0) != (count <= 0)) { |
|
grid_out[i] = (count > 0) ? 0.f : -1.f; |
|
} |
|
} |
|
|
|
__global__ void generate_grid_samples_nerf_uniform(Eigen::Vector3i res_3d, const uint32_t step, BoundingBox render_aabb, Matrix3f render_aabb_to_local, BoundingBox train_aabb, NerfPosition* __restrict__ out) { |
|
|
|
uint32_t x = threadIdx.x + blockIdx.x * blockDim.x; |
|
uint32_t y = threadIdx.y + blockIdx.y * blockDim.y; |
|
uint32_t z = threadIdx.z + blockIdx.z * blockDim.z; |
|
if (x>=res_3d.x() || y>=res_3d.y() || z>=res_3d.z()) |
|
return; |
|
uint32_t i = x+ y*res_3d.x() + z*res_3d.x()*res_3d.y(); |
|
Vector3f pos = Vector3f{(float)x, (float)y, (float)z}.cwiseQuotient((res_3d-Vector3i::Ones()).cast<float>()); |
|
pos = render_aabb_to_local.transpose() * (pos.cwiseProduct(render_aabb.max - render_aabb.min) + render_aabb.min); |
|
out[i] = { warp_position(pos, train_aabb), warp_dt(MIN_CONE_STEPSIZE()) }; |
|
} |
|
|
|
|
|
__global__ void generate_grid_samples_nerf_uniform_dir(Eigen::Vector3i res_3d, const uint32_t step, BoundingBox render_aabb, Matrix3f render_aabb_to_local, BoundingBox train_aabb, Eigen::Vector3f ray_dir, NerfCoordinate* __restrict__ network_input, bool voxel_centers) { |
|
|
|
uint32_t x = threadIdx.x + blockIdx.x * blockDim.x; |
|
uint32_t y = threadIdx.y + blockIdx.y * blockDim.y; |
|
uint32_t z = threadIdx.z + blockIdx.z * blockDim.z; |
|
if (x>=res_3d.x() || y>=res_3d.y() || z>=res_3d.z()) |
|
return; |
|
uint32_t i = x+ y*res_3d.x() + z*res_3d.x()*res_3d.y(); |
|
Vector3f pos; |
|
if (voxel_centers) |
|
pos = Vector3f{(float)x+0.5f, (float)y+0.5f, (float)z+0.5f}.cwiseQuotient((res_3d).cast<float>()); |
|
else |
|
pos = Vector3f{(float)x, (float)y, (float)z}.cwiseQuotient((res_3d-Vector3i::Ones()).cast<float>()); |
|
pos = render_aabb_to_local.transpose() * (pos.cwiseProduct(render_aabb.max - render_aabb.min) + render_aabb.min); |
|
network_input[i] = { warp_position(pos, train_aabb), warp_direction(ray_dir), warp_dt(MIN_CONE_STEPSIZE()) }; |
|
} |
|
|
|
inline __device__ int mip_from_pos(const Vector3f& pos, uint32_t max_cascade = NERF_CASCADES()-1) { |
|
int exponent; |
|
float maxval = (pos - Vector3f::Constant(0.5f)).cwiseAbs().maxCoeff(); |
|
frexpf(maxval, &exponent); |
|
return min(max_cascade, max(0, exponent+1)); |
|
} |
|
|
|
inline __device__ int mip_from_dt(float dt, const Vector3f& pos, uint32_t max_cascade = NERF_CASCADES()-1) { |
|
int mip = mip_from_pos(pos, max_cascade); |
|
dt *= 2*NERF_GRIDSIZE(); |
|
if (dt<1.f) return mip; |
|
int exponent; |
|
frexpf(dt, &exponent); |
|
return min(max_cascade, max(exponent, mip)); |
|
} |
|
|
|
__global__ void generate_grid_samples_nerf_nonuniform(const uint32_t n_elements, default_rng_t rng, const uint32_t step, BoundingBox aabb, const float* __restrict__ grid_in, NerfPosition* __restrict__ out, uint32_t* __restrict__ indices, uint32_t n_cascades, float thresh) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
|
|
rng.advance(i*4); |
|
uint32_t level = (uint32_t)(random_val(rng) * n_cascades) % n_cascades; |
|
|
|
|
|
uint32_t idx; |
|
for (uint32_t j = 0; j < 10; ++j) { |
|
idx = ((i+step*n_elements) * 56924617 + j * 19349663 + 96925573) % (NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()); |
|
idx += level * NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE(); |
|
if (grid_in[idx] > thresh) { |
|
break; |
|
} |
|
} |
|
|
|
|
|
uint32_t pos_idx = idx % (NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()); |
|
|
|
uint32_t x = tcnn::morton3D_invert(pos_idx>>0); |
|
uint32_t y = tcnn::morton3D_invert(pos_idx>>1); |
|
uint32_t z = tcnn::morton3D_invert(pos_idx>>2); |
|
|
|
Vector3f pos = ((Vector3f{(float)x, (float)y, (float)z} + random_val_3d(rng)) / NERF_GRIDSIZE() - Vector3f::Constant(0.5f)) * scalbnf(1.0f, level) + Vector3f::Constant(0.5f); |
|
|
|
out[i] = { warp_position(pos, aabb), warp_dt(MIN_CONE_STEPSIZE()) }; |
|
indices[i] = idx; |
|
} |
|
|
|
__global__ void splat_grid_samples_nerf_max_nearest_neighbor(const uint32_t n_elements, const uint32_t* __restrict__ indices, const tcnn::network_precision_t* network_output, float* __restrict__ grid_out, ENerfActivation rgb_activation, ENerfActivation density_activation) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
uint32_t local_idx = indices[i]; |
|
|
|
|
|
|
|
uint32_t level = 0; |
|
|
|
float mlp = network_to_density(float(network_output[i]), density_activation); |
|
float optical_thickness = mlp * scalbnf(MIN_CONE_STEPSIZE(), level); |
|
|
|
|
|
|
|
atomicMax((uint32_t*)&grid_out[local_idx], __float_as_uint(optical_thickness)); |
|
} |
|
|
|
__global__ void grid_samples_half_to_float(const uint32_t n_elements, BoundingBox aabb, float* dst, const tcnn::network_precision_t* network_output, ENerfActivation density_activation, const NerfPosition* __restrict__ coords_in, const float* __restrict__ grid_in, uint32_t max_cascade) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
|
|
|
|
float mlp = float(network_output[i]); |
|
|
|
if (grid_in) { |
|
Vector3f pos = unwarp_position(coords_in[i].p, aabb); |
|
float grid_density = cascaded_grid_at(pos, grid_in, mip_from_pos(pos, max_cascade)); |
|
if (grid_density < NERF_MIN_OPTICAL_THICKNESS()) { |
|
mlp = -10000.f; |
|
} |
|
} |
|
dst[i] = mlp; |
|
} |
|
|
|
__global__ void ema_grid_samples_nerf(const uint32_t n_elements, |
|
float decay, |
|
const uint32_t count, |
|
float* __restrict__ grid_out, |
|
const float* __restrict__ grid_in |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
float importance = grid_in[i]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float prev_val = grid_out[i]; |
|
float val = (prev_val<0.f) ? prev_val : fmaxf(prev_val * decay, importance); |
|
grid_out[i] = val; |
|
} |
|
|
|
__global__ void decay_sharpness_grid_nerf(const uint32_t n_elements, float decay, float* __restrict__ grid) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
grid[i] *= decay; |
|
} |
|
|
|
__global__ void grid_to_bitfield( |
|
const uint32_t n_elements, |
|
const uint32_t n_nonzero_elements, |
|
const float* __restrict__ grid, |
|
uint8_t* __restrict__ grid_bitfield, |
|
const float* __restrict__ mean_density_ptr |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
if (i >= n_nonzero_elements) { |
|
grid_bitfield[i] = 0; |
|
return; |
|
} |
|
|
|
uint8_t bits = 0; |
|
|
|
float thresh = std::min(NERF_MIN_OPTICAL_THICKNESS(), *mean_density_ptr); |
|
|
|
NGP_PRAGMA_UNROLL |
|
for (uint8_t j = 0; j < 8; ++j) { |
|
bits |= grid[i*8+j] > thresh ? ((uint8_t)1 << j) : 0; |
|
} |
|
|
|
grid_bitfield[i] = bits; |
|
} |
|
|
|
__global__ void bitfield_max_pool(const uint32_t n_elements, |
|
const uint8_t* __restrict__ prev_level, |
|
uint8_t* __restrict__ next_level |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
uint8_t bits = 0; |
|
|
|
NGP_PRAGMA_UNROLL |
|
for (uint8_t j = 0; j < 8; ++j) { |
|
|
|
|
|
bits |= prev_level[i*8+j] > 0 ? ((uint8_t)1 << j) : 0; |
|
} |
|
|
|
uint32_t x = tcnn::morton3D_invert(i>>0) + NERF_GRIDSIZE()/8; |
|
uint32_t y = tcnn::morton3D_invert(i>>1) + NERF_GRIDSIZE()/8; |
|
uint32_t z = tcnn::morton3D_invert(i>>2) + NERF_GRIDSIZE()/8; |
|
|
|
next_level[tcnn::morton3D(x, y, z)] |= bits; |
|
} |
|
|
|
__global__ void advance_pos_nerf( |
|
const uint32_t n_elements, |
|
BoundingBox render_aabb, |
|
Matrix3f render_aabb_to_local, |
|
Vector3f camera_fwd, |
|
Vector2f focal_length, |
|
uint32_t sample_index, |
|
NerfPayload* __restrict__ payloads, |
|
const uint8_t* __restrict__ density_grid, |
|
uint32_t min_mip, |
|
float cone_angle_constant |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
NerfPayload& payload = payloads[i]; |
|
|
|
if (!payload.alive) { |
|
return; |
|
} |
|
|
|
Vector3f origin = payload.origin; |
|
Vector3f dir = payload.dir; |
|
Vector3f idir = dir.cwiseInverse(); |
|
|
|
float cone_angle = calc_cone_angle(dir.dot(camera_fwd), focal_length, cone_angle_constant); |
|
|
|
float t = payload.t; |
|
float dt = calc_dt(t, cone_angle); |
|
t += ld_random_val(sample_index, i * 786433) * dt; |
|
Vector3f pos; |
|
|
|
while (1) { |
|
pos = origin + dir * t; |
|
if (!render_aabb.contains(render_aabb_to_local * pos)) { |
|
payload.alive = false; |
|
break; |
|
} |
|
|
|
dt = calc_dt(t, cone_angle); |
|
|
|
|
|
|
|
|
|
|
|
uint32_t mip = max(min_mip, mip_from_pos(pos)); |
|
|
|
if (!density_grid || density_grid_occupied_at(pos, density_grid, mip)) { |
|
break; |
|
} |
|
|
|
uint32_t res = NERF_GRIDSIZE()>>mip; |
|
t = advance_to_next_voxel(t, cone_angle, pos, dir, idir, res); |
|
} |
|
|
|
payload.t = t; |
|
} |
|
|
|
__global__ void generate_nerf_network_inputs_from_positions(const uint32_t n_elements, BoundingBox aabb, const Vector3f* __restrict__ pos, PitchedPtr<NerfCoordinate> network_input, const float* extra_dims) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
Vector3f dir=(pos[i]-Vector3f::Constant(0.5f)).normalized(); |
|
network_input(i)->set_with_optional_extra_dims(warp_position(pos[i], aabb), warp_direction(dir), warp_dt(MIN_CONE_STEPSIZE()), extra_dims, network_input.stride_in_bytes); |
|
} |
|
|
|
__global__ void generate_nerf_network_inputs_at_current_position(const uint32_t n_elements, BoundingBox aabb, const NerfPayload* __restrict__ payloads, PitchedPtr<NerfCoordinate> network_input, const float* extra_dims) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
Vector3f dir = payloads[i].dir; |
|
network_input(i)->set_with_optional_extra_dims(warp_position(payloads[i].origin + dir * payloads[i].t, aabb), warp_direction(dir), warp_dt(MIN_CONE_STEPSIZE()), extra_dims, network_input.stride_in_bytes); |
|
} |
|
|
|
__global__ void compute_nerf_rgba(const uint32_t n_elements, Array4f* network_output, ENerfActivation rgb_activation, ENerfActivation density_activation, float depth, bool density_as_alpha = false) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
Array4f rgba = network_output[i]; |
|
|
|
float density = network_to_density(rgba.w(), density_activation); |
|
float alpha = 1.f; |
|
if (density_as_alpha) { |
|
rgba.w() = density; |
|
} else { |
|
rgba.w() = alpha = tcnn::clamp(1.f - __expf(-density * depth), 0.0f, 1.0f); |
|
} |
|
|
|
rgba.x() = network_to_rgb(rgba.x(), rgb_activation) * alpha; |
|
rgba.y() = network_to_rgb(rgba.y(), rgb_activation) * alpha; |
|
rgba.z() = network_to_rgb(rgba.z(), rgb_activation) * alpha; |
|
|
|
network_output[i] = rgba; |
|
} |
|
|
|
__global__ void generate_next_nerf_network_inputs( |
|
const uint32_t n_elements, |
|
BoundingBox render_aabb, |
|
Matrix3f render_aabb_to_local, |
|
BoundingBox train_aabb, |
|
Vector2f focal_length, |
|
Vector3f camera_fwd, |
|
NerfPayload* __restrict__ payloads, |
|
PitchedPtr<NerfCoordinate> network_input, |
|
uint32_t n_steps, |
|
const uint8_t* __restrict__ density_grid, |
|
uint32_t min_mip, |
|
float cone_angle_constant, |
|
const float* extra_dims |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
NerfPayload& payload = payloads[i]; |
|
|
|
if (!payload.alive) { |
|
return; |
|
} |
|
|
|
Vector3f origin = payload.origin; |
|
Vector3f dir = payload.dir; |
|
Vector3f idir = dir.cwiseInverse(); |
|
|
|
float cone_angle = calc_cone_angle(dir.dot(camera_fwd), focal_length, cone_angle_constant); |
|
|
|
float t = payload.t; |
|
|
|
for (uint32_t j = 0; j < n_steps; ++j) { |
|
Vector3f pos; |
|
float dt = 0.0f; |
|
while (1) { |
|
pos = origin + dir * t; |
|
if (!render_aabb.contains(render_aabb_to_local * pos)) { |
|
payload.n_steps = j; |
|
return; |
|
} |
|
|
|
dt = calc_dt(t, cone_angle); |
|
|
|
|
|
|
|
|
|
|
|
uint32_t mip = max(min_mip, mip_from_pos(pos)); |
|
|
|
if (!density_grid || density_grid_occupied_at(pos, density_grid, mip)) { |
|
break; |
|
} |
|
|
|
uint32_t res = NERF_GRIDSIZE()>>mip; |
|
t = advance_to_next_voxel(t, cone_angle, pos, dir, idir, res); |
|
} |
|
|
|
network_input(i + j * n_elements)->set_with_optional_extra_dims(warp_position(pos, train_aabb), warp_direction(dir), warp_dt(dt), extra_dims, network_input.stride_in_bytes); |
|
t += dt; |
|
} |
|
|
|
payload.t = t; |
|
payload.n_steps = n_steps; |
|
} |
|
|
|
__global__ void composite_kernel_nerf( |
|
const uint32_t n_elements, |
|
const uint32_t stride, |
|
const uint32_t current_step, |
|
BoundingBox aabb, |
|
float glow_y_cutoff, |
|
int glow_mode, |
|
const uint32_t n_training_images, |
|
const TrainingXForm* __restrict__ training_xforms, |
|
Matrix<float, 3, 4> camera_matrix, |
|
Vector2f focal_length, |
|
float depth_scale, |
|
Array4f* __restrict__ rgba, |
|
float* __restrict__ depth, |
|
NerfPayload* payloads, |
|
PitchedPtr<NerfCoordinate> network_input, |
|
const tcnn::network_precision_t* __restrict__ network_output, |
|
uint32_t padded_output_width, |
|
uint32_t n_steps, |
|
ERenderMode render_mode, |
|
const uint8_t* __restrict__ density_grid, |
|
ENerfActivation rgb_activation, |
|
ENerfActivation density_activation, |
|
int show_accel, |
|
float min_transmittance |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
NerfPayload& payload = payloads[i]; |
|
|
|
if (!payload.alive) { |
|
return; |
|
} |
|
|
|
Array4f local_rgba = rgba[i]; |
|
float local_depth = depth[i]; |
|
Vector3f origin = payload.origin; |
|
Vector3f cam_fwd = camera_matrix.col(2); |
|
|
|
uint32_t actual_n_steps = payload.n_steps; |
|
uint32_t j = 0; |
|
|
|
for (; j < actual_n_steps; ++j) { |
|
tcnn::vector_t<tcnn::network_precision_t, 4> local_network_output; |
|
local_network_output[0] = network_output[i + j * n_elements + 0 * stride]; |
|
local_network_output[1] = network_output[i + j * n_elements + 1 * stride]; |
|
local_network_output[2] = network_output[i + j * n_elements + 2 * stride]; |
|
local_network_output[3] = network_output[i + j * n_elements + 3 * stride]; |
|
const NerfCoordinate* input = network_input(i + j * n_elements); |
|
Vector3f warped_pos = input->pos.p; |
|
Vector3f pos = unwarp_position(warped_pos, aabb); |
|
|
|
float T = 1.f - local_rgba.w(); |
|
float dt = unwarp_dt(input->dt); |
|
float alpha = 1.f - __expf(-network_to_density(float(local_network_output[3]), density_activation) * dt); |
|
if (show_accel >= 0) { |
|
alpha = 1.f; |
|
} |
|
float weight = alpha * T; |
|
|
|
Array3f rgb = network_to_rgb(local_network_output, rgb_activation); |
|
|
|
if (glow_mode) { |
|
#if 0 |
|
if (0) { |
|
float glow_y = (pos.y() - (glow_y_cutoff - 0.5f)) * 2.f; |
|
if (glow_y>1.f) glow_y=max(0.f,21.f-glow_y*20.f); |
|
if (glow_y>0.f) { |
|
float line; |
|
line =max(0.f,cosf(pos.y()*2.f*3.141592653589793f * 16.f)-0.95f); |
|
line+=max(0.f,cosf(pos.x()*2.f*3.141592653589793f * 16.f)-0.95f); |
|
line+=max(0.f,cosf(pos.z()*2.f*3.141592653589793f * 16.f)-0.95f); |
|
line+=max(0.f,cosf(pos.y()*4.f*3.141592653589793f * 16.f)-0.975f); |
|
line+=max(0.f,cosf(pos.x()*4.f*3.141592653589793f * 16.f)-0.975f); |
|
line+=max(0.f,cosf(pos.z()*4.f*3.141592653589793f * 16.f)-0.975f); |
|
glow_y=glow_y*glow_y*0.5f + glow_y*line*25.f; |
|
rgb.y()+=glow_y; |
|
rgb.z()+=glow_y*0.5f; |
|
rgb.x()+=glow_y*0.25f; |
|
} |
|
} |
|
#endif |
|
float glow = 0.f; |
|
|
|
bool green_grid = glow_mode & 1; |
|
bool green_cutline = glow_mode & 2; |
|
bool mask_to_alpha = glow_mode & 4; |
|
|
|
|
|
bool radial_mode = glow_mode & 8; |
|
bool grid_mode = glow_mode & 16; |
|
|
|
{ |
|
float dist; |
|
if (radial_mode) { |
|
dist = (pos - camera_matrix.col(3)).norm(); |
|
dist = min(dist, (4.5f - pos.y()) * 0.333f); |
|
} else { |
|
dist = pos.y(); |
|
} |
|
|
|
if (grid_mode) { |
|
glow = 1.f / max(1.f, dist); |
|
} else { |
|
float y = glow_y_cutoff - dist; |
|
float mask = 0.f; |
|
if (y > 0.f) { |
|
y *= 80.f; |
|
mask = min(1.f, y); |
|
|
|
|
|
|
|
{ |
|
if (green_cutline) { |
|
glow += max(0.f, 1.f - abs(1.f -y)) * 4.f; |
|
} |
|
|
|
if (y>1.f) { |
|
y = 1.f - (y - 1.f) * 0.05f; |
|
} |
|
|
|
if (green_grid) { |
|
glow += max(0.f, y / max(1.f, dist)); |
|
} |
|
} |
|
} |
|
if (mask_to_alpha) { |
|
weight *= mask; |
|
} |
|
} |
|
} |
|
|
|
if (glow > 0.f) { |
|
float line; |
|
line = max(0.f, cosf(pos.y() * 2.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.x() * 2.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.z() * 2.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.y() * 4.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.x() * 4.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.z() * 4.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.y() * 8.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.x() * 8.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.z() * 8.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.y() * 16.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.x() * 16.f * 3.141592653589793f * 16.f) - 0.975f); |
|
line += max(0.f, cosf(pos.z() * 16.f * 3.141592653589793f * 16.f) - 0.975f); |
|
if (grid_mode) { |
|
glow = glow * line * 15.f; |
|
rgb.y() = glow; |
|
rgb.z() = glow * 0.5f; |
|
rgb.x() = glow * 0.25f; |
|
} else { |
|
glow = glow * glow * 0.25f + glow * line * 15.f; |
|
rgb.y() += glow; |
|
rgb.z() += glow * 0.5f; |
|
rgb.x() += glow * 0.25f; |
|
} |
|
} |
|
} |
|
|
|
if (render_mode == ERenderMode::Normals) { |
|
|
|
|
|
|
|
Vector3f normal = -network_to_density_derivative(float(local_network_output[3]), density_activation) * warped_pos; |
|
rgb = normal.normalized().array(); |
|
} else if (render_mode == ERenderMode::Positions) { |
|
if (show_accel >= 0) { |
|
uint32_t mip = max(show_accel, mip_from_pos(pos)); |
|
uint32_t res = NERF_GRIDSIZE() >> mip; |
|
int ix = pos.x()*(res); |
|
int iy = pos.y()*(res); |
|
int iz = pos.z()*(res); |
|
default_rng_t rng(ix+iy*232323+iz*727272); |
|
rgb.x() = 1.f-mip*(1.f/(NERF_CASCADES()-1)); |
|
rgb.y() = rng.next_float(); |
|
rgb.z() = rng.next_float(); |
|
} else { |
|
rgb = (pos.array() - Array3f::Constant(0.5f)) / 2.0f + Array3f::Constant(0.5f); |
|
} |
|
} else if (render_mode == ERenderMode::EncodingVis) { |
|
rgb = warped_pos.array(); |
|
} else if (render_mode == ERenderMode::Depth) { |
|
rgb = Array3f::Constant(cam_fwd.dot(pos - origin) * depth_scale); |
|
} else if (render_mode == ERenderMode::AO) { |
|
rgb = Array3f::Constant(alpha); |
|
} |
|
|
|
local_rgba.head<3>() += rgb * weight; |
|
local_rgba.w() += weight; |
|
if (weight > payload.max_weight) { |
|
payload.max_weight = weight; |
|
local_depth = cam_fwd.dot(pos - camera_matrix.col(3)); |
|
} |
|
|
|
if (local_rgba.w() > (1.0f - min_transmittance)) { |
|
local_rgba /= local_rgba.w(); |
|
break; |
|
} |
|
} |
|
|
|
if (j < n_steps) { |
|
payload.alive = false; |
|
payload.n_steps = j + current_step; |
|
} |
|
|
|
rgba[i] = local_rgba; |
|
depth[i] = local_depth; |
|
} |
|
|
|
static constexpr float UNIFORM_SAMPLING_FRACTION = 0.5f; |
|
|
|
inline __device__ Vector2f sample_cdf_2d(Vector2f sample, uint32_t img, const Vector2i& res, const float* __restrict__ cdf_x_cond_y, const float* __restrict__ cdf_y, float* __restrict__ pdf) { |
|
if (sample.x() < UNIFORM_SAMPLING_FRACTION) { |
|
sample.x() /= UNIFORM_SAMPLING_FRACTION; |
|
return sample; |
|
} |
|
|
|
sample.x() = (sample.x() - UNIFORM_SAMPLING_FRACTION) / (1.0f - UNIFORM_SAMPLING_FRACTION); |
|
|
|
cdf_y += img * res.y(); |
|
|
|
|
|
uint32_t y = binary_search(sample.y(), cdf_y, res.y()); |
|
float prev = y > 0 ? cdf_y[y-1] : 0.0f; |
|
float pmf_y = cdf_y[y] - prev; |
|
sample.y() = (sample.y() - prev) / pmf_y; |
|
|
|
cdf_x_cond_y += img * res.y() * res.x() + y * res.x(); |
|
|
|
|
|
uint32_t x = binary_search(sample.x(), cdf_x_cond_y, res.x()); |
|
prev = x > 0 ? cdf_x_cond_y[x-1] : 0.0f; |
|
float pmf_x = cdf_x_cond_y[x] - prev; |
|
sample.x() = (sample.x() - prev) / pmf_x; |
|
|
|
if (pdf) { |
|
*pdf = pmf_x * pmf_y * res.prod(); |
|
} |
|
|
|
return {((float)x + sample.x()) / (float)res.x(), ((float)y + sample.y()) / (float)res.y()}; |
|
} |
|
|
|
inline __device__ float pdf_2d(Vector2f sample, uint32_t img, const Vector2i& res, const float* __restrict__ cdf_x_cond_y, const float* __restrict__ cdf_y) { |
|
Vector2i p = (sample.cwiseProduct(res.cast<float>())).cast<int>().cwiseMax(0).cwiseMin(res - Vector2i::Ones()); |
|
|
|
cdf_y += img * res.y(); |
|
cdf_x_cond_y += img * res.y() * res.x() + p.y() * res.x(); |
|
|
|
float pmf_y = cdf_y[p.y()]; |
|
if (p.y() > 0) { |
|
pmf_y -= cdf_y[p.y()-1]; |
|
} |
|
|
|
float pmf_x = cdf_x_cond_y[p.x()]; |
|
if (p.x() > 0) { |
|
pmf_x -= cdf_x_cond_y[p.x()-1]; |
|
} |
|
|
|
|
|
float pmf = pmf_x * pmf_y; |
|
|
|
|
|
return UNIFORM_SAMPLING_FRACTION + pmf * res.prod() * (1.0f - UNIFORM_SAMPLING_FRACTION); |
|
} |
|
|
|
inline __device__ Vector2f nerf_random_image_pos_training(default_rng_t& rng, const Vector2i& resolution, bool snap_to_pixel_centers, const float* __restrict__ cdf_x_cond_y, const float* __restrict__ cdf_y, const Vector2i& cdf_res, uint32_t img, float* __restrict__ pdf = nullptr) { |
|
Vector2f xy = random_val_2d(rng); |
|
|
|
if (cdf_x_cond_y) { |
|
xy = sample_cdf_2d(xy, img, cdf_res, cdf_x_cond_y, cdf_y, pdf); |
|
} else if (pdf) { |
|
*pdf = 1.0f; |
|
} |
|
|
|
if (snap_to_pixel_centers) { |
|
xy = (xy.cwiseProduct(resolution.cast<float>()).cast<int>().cwiseMax(0).cwiseMin(resolution - Vector2i::Ones()).cast<float>() + Vector2f::Constant(0.5f)).cwiseQuotient(resolution.cast<float>()); |
|
} |
|
return xy; |
|
} |
|
|
|
inline __device__ uint32_t image_idx(uint32_t base_idx, uint32_t n_rays, uint32_t n_rays_total, uint32_t n_training_images, const float* __restrict__ cdf = nullptr, float* __restrict__ pdf = nullptr) { |
|
if (cdf) { |
|
float sample = ld_random_val(base_idx, 0xdeadbeef); |
|
|
|
uint32_t img = binary_search(sample, cdf, n_training_images); |
|
|
|
if (pdf) { |
|
float prev = img > 0 ? cdf[img-1] : 0.0f; |
|
*pdf = (cdf[img] - prev) * n_training_images; |
|
} |
|
|
|
return img; |
|
} |
|
|
|
|
|
|
|
|
|
if (pdf) { |
|
*pdf = 1.0f; |
|
} |
|
return (((base_idx) * n_training_images) / n_rays) % n_training_images; |
|
} |
|
|
|
__global__ void generate_training_samples_nerf( |
|
const uint32_t n_rays, |
|
BoundingBox aabb, |
|
const uint32_t max_samples, |
|
const uint32_t n_rays_total, |
|
default_rng_t rng, |
|
uint32_t* __restrict__ ray_counter, |
|
uint32_t* __restrict__ numsteps_counter, |
|
uint32_t* __restrict__ ray_indices_out, |
|
Ray* __restrict__ rays_out_unnormalized, |
|
uint32_t* __restrict__ numsteps_out, |
|
PitchedPtr<NerfCoordinate> coords_out, |
|
const uint32_t n_training_images, |
|
const TrainingImageMetadata* __restrict__ metadata, |
|
const TrainingXForm* training_xforms, |
|
const uint8_t* __restrict__ density_grid, |
|
bool max_level_rand_training, |
|
float* __restrict__ max_level_ptr, |
|
bool snap_to_pixel_centers, |
|
bool train_envmap, |
|
float cone_angle_constant, |
|
const float* __restrict__ distortion_data, |
|
const Vector2i distortion_resolution, |
|
const float* __restrict__ cdf_x_cond_y, |
|
const float* __restrict__ cdf_y, |
|
const float* __restrict__ cdf_img, |
|
const Vector2i cdf_res, |
|
const float* __restrict__ extra_dims_gpu, |
|
uint32_t n_extra_dims |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_rays) return; |
|
|
|
uint32_t img = image_idx(i, n_rays, n_rays_total, n_training_images, cdf_img); |
|
Eigen::Vector2i resolution = metadata[img].resolution; |
|
|
|
rng.advance(i * N_MAX_RANDOM_SAMPLES_PER_RAY()); |
|
Vector2f xy = nerf_random_image_pos_training(rng, resolution, snap_to_pixel_centers, cdf_x_cond_y, cdf_y, cdf_res, img); |
|
|
|
|
|
size_t pix_idx = pixel_idx(xy, resolution, 0); |
|
if (read_rgba(xy, resolution, metadata[img].pixels, metadata[img].image_data_type).x() < 0.0f) { |
|
return; |
|
} |
|
|
|
float max_level = max_level_rand_training ? (random_val(rng) * 2.0f) : 1.0f; |
|
|
|
float motionblur_time = random_val(rng); |
|
|
|
const Vector2f focal_length = metadata[img].focal_length; |
|
const Vector2f principal_point = metadata[img].principal_point; |
|
const float* extra_dims = extra_dims_gpu + img * n_extra_dims; |
|
const Lens lens = metadata[img].lens; |
|
|
|
const Matrix<float, 3, 4> xform = get_xform_given_rolling_shutter(training_xforms[img], metadata[img].rolling_shutter, xy, motionblur_time); |
|
|
|
Ray ray_unnormalized; |
|
const Ray* rays_in_unnormalized = metadata[img].rays; |
|
if (rays_in_unnormalized) { |
|
|
|
ray_unnormalized = rays_in_unnormalized[pix_idx]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} else { |
|
|
|
ray_unnormalized.o = xform.col(3); |
|
if (lens.mode == ELensMode::FTheta) { |
|
ray_unnormalized.d = f_theta_undistortion(xy - principal_point, lens.params, {0.f, 0.f, 1.f}); |
|
} else if (lens.mode == ELensMode::LatLong) { |
|
ray_unnormalized.d = latlong_to_dir(xy); |
|
} else { |
|
ray_unnormalized.d = { |
|
(xy.x()-principal_point.x())*resolution.x() / focal_length.x(), |
|
(xy.y()-principal_point.y())*resolution.y() / focal_length.y(), |
|
1.0f, |
|
}; |
|
|
|
if (lens.mode == ELensMode::OpenCV) { |
|
iterative_opencv_lens_undistortion(lens.params, &ray_unnormalized.d.x(), &ray_unnormalized.d.y()); |
|
} |
|
} |
|
|
|
if (distortion_data) { |
|
ray_unnormalized.d.head<2>() += read_image<2>(distortion_data, distortion_resolution, xy); |
|
} |
|
|
|
ray_unnormalized.d = (xform.block<3, 3>(0, 0) * ray_unnormalized.d); |
|
} |
|
|
|
Eigen::Vector3f ray_d_normalized = ray_unnormalized.d.normalized(); |
|
|
|
Vector2f tminmax = aabb.ray_intersect(ray_unnormalized.o, ray_d_normalized); |
|
float cone_angle = calc_cone_angle(ray_d_normalized.dot(xform.col(2)), focal_length, cone_angle_constant); |
|
|
|
|
|
tminmax.x() = fmaxf(tminmax.x(), 0.0f); |
|
|
|
float startt = tminmax.x(); |
|
startt += calc_dt(startt, cone_angle) * random_val(rng); |
|
Vector3f idir = ray_d_normalized.cwiseInverse(); |
|
|
|
|
|
uint32_t j = 0; |
|
float t=startt; |
|
Vector3f pos; |
|
|
|
while (aabb.contains(pos = ray_unnormalized.o + t * ray_d_normalized) && j < NERF_STEPS()) { |
|
float dt = calc_dt(t, cone_angle); |
|
uint32_t mip = mip_from_dt(dt, pos); |
|
if (density_grid_occupied_at(pos, density_grid, mip)) { |
|
++j; |
|
t += dt; |
|
} else { |
|
uint32_t res = NERF_GRIDSIZE()>>mip; |
|
t = advance_to_next_voxel(t, cone_angle, pos, ray_d_normalized, idir, res); |
|
} |
|
} |
|
if (j == 0 && !train_envmap) { |
|
return; |
|
} |
|
uint32_t numsteps = j; |
|
uint32_t base = atomicAdd(numsteps_counter, numsteps); |
|
if (base + numsteps > max_samples) { |
|
return; |
|
} |
|
|
|
coords_out += base; |
|
|
|
uint32_t ray_idx = atomicAdd(ray_counter, 1); |
|
|
|
ray_indices_out[ray_idx] = i; |
|
rays_out_unnormalized[ray_idx] = ray_unnormalized; |
|
numsteps_out[ray_idx*2+0] = numsteps; |
|
numsteps_out[ray_idx*2+1] = base; |
|
|
|
Vector3f warped_dir = warp_direction(ray_d_normalized); |
|
t=startt; |
|
j=0; |
|
while (aabb.contains(pos = ray_unnormalized.o + t * ray_d_normalized) && j < numsteps) { |
|
float dt = calc_dt(t, cone_angle); |
|
uint32_t mip = mip_from_dt(dt, pos); |
|
if (density_grid_occupied_at(pos, density_grid, mip)) { |
|
coords_out(j)->set_with_optional_extra_dims(warp_position(pos, aabb), warped_dir, warp_dt(dt), extra_dims, coords_out.stride_in_bytes); |
|
++j; |
|
t += dt; |
|
} else { |
|
uint32_t res = NERF_GRIDSIZE()>>mip; |
|
t = advance_to_next_voxel(t, cone_angle, pos, ray_d_normalized, idir, res); |
|
} |
|
} |
|
if (max_level_rand_training) { |
|
max_level_ptr += base; |
|
for (j = 0; j < numsteps; ++j) { |
|
max_level_ptr[j] = max_level; |
|
} |
|
} |
|
} |
|
|
|
|
|
__device__ LossAndGradient loss_and_gradient(const Vector3f& target, const Vector3f& prediction, ELossType loss_type) { |
|
switch (loss_type) { |
|
case ELossType::RelativeL2: return relative_l2_loss(target, prediction); break; |
|
case ELossType::L1: return l1_loss(target, prediction); break; |
|
case ELossType::Mape: return mape_loss(target, prediction); break; |
|
case ELossType::Smape: return smape_loss(target, prediction); break; |
|
|
|
|
|
|
|
|
|
|
|
case ELossType::Huber: return huber_loss(target, prediction, 0.1f) / 5.0f; break; |
|
case ELossType::LogL1: return log_l1_loss(target, prediction); break; |
|
default: case ELossType::L2: return l2_loss(target, prediction); break; |
|
} |
|
} |
|
|
|
__global__ void compute_loss_kernel_train_nerf( |
|
const uint32_t n_rays, |
|
BoundingBox aabb, |
|
const uint32_t n_rays_total, |
|
default_rng_t rng, |
|
const uint32_t max_samples_compacted, |
|
const uint32_t* __restrict__ rays_counter, |
|
float loss_scale, |
|
int padded_output_width, |
|
const float* __restrict__ envmap_data, |
|
float* __restrict__ envmap_gradient, |
|
const Vector2i envmap_resolution, |
|
ELossType envmap_loss_type, |
|
Array3f background_color, |
|
EColorSpace color_space, |
|
bool train_with_random_bg_color, |
|
bool train_in_linear_colors, |
|
const uint32_t n_training_images, |
|
const TrainingImageMetadata* __restrict__ metadata, |
|
const tcnn::network_precision_t* network_output, |
|
uint32_t* __restrict__ numsteps_counter, |
|
const uint32_t* __restrict__ ray_indices_in, |
|
const Ray* __restrict__ rays_in_unnormalized, |
|
uint32_t* __restrict__ numsteps_in, |
|
PitchedPtr<const NerfCoordinate> coords_in, |
|
PitchedPtr<NerfCoordinate> coords_out, |
|
tcnn::network_precision_t* dloss_doutput, |
|
ELossType loss_type, |
|
ELossType depth_loss_type, |
|
float* __restrict__ loss_output, |
|
bool max_level_rand_training, |
|
float* __restrict__ max_level_compacted_ptr, |
|
ENerfActivation rgb_activation, |
|
ENerfActivation density_activation, |
|
bool snap_to_pixel_centers, |
|
float* __restrict__ error_map, |
|
const float* __restrict__ cdf_x_cond_y, |
|
const float* __restrict__ cdf_y, |
|
const float* __restrict__ cdf_img, |
|
const Vector2i error_map_res, |
|
const Vector2i error_map_cdf_res, |
|
const float* __restrict__ sharpness_data, |
|
Eigen::Vector2i sharpness_resolution, |
|
float* __restrict__ sharpness_grid, |
|
float* __restrict__ density_grid, |
|
const float* __restrict__ mean_density_ptr, |
|
const Eigen::Array3f* __restrict__ exposure, |
|
Eigen::Array3f* __restrict__ exposure_gradient, |
|
float depth_supervision_lambda, |
|
float near_distance |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= *rays_counter) { return; } |
|
|
|
|
|
uint32_t numsteps = numsteps_in[i*2+0]; |
|
uint32_t base = numsteps_in[i*2+1]; |
|
|
|
coords_in += base; |
|
network_output += base * padded_output_width; |
|
|
|
float T = 1.f; |
|
|
|
float EPSILON = 1e-4f; |
|
|
|
Array3f rgb_ray = Array3f::Zero(); |
|
Vector3f hitpoint = Vector3f::Zero(); |
|
|
|
float depth_ray = 0.f; |
|
uint32_t compacted_numsteps = 0; |
|
Eigen::Vector3f ray_o = rays_in_unnormalized[i].o; |
|
for (; compacted_numsteps < numsteps; ++compacted_numsteps) { |
|
if (T < EPSILON) { |
|
break; |
|
} |
|
|
|
const tcnn::vector_t<tcnn::network_precision_t, 4> local_network_output = *(tcnn::vector_t<tcnn::network_precision_t, 4>*)network_output; |
|
const Array3f rgb = network_to_rgb(local_network_output, rgb_activation); |
|
const Vector3f pos = unwarp_position(coords_in.ptr->pos.p, aabb); |
|
const float dt = unwarp_dt(coords_in.ptr->dt); |
|
float cur_depth = (pos - ray_o).norm(); |
|
float density = network_to_density(float(local_network_output[3]), density_activation); |
|
|
|
|
|
const float alpha = 1.f - __expf(-density * dt); |
|
const float weight = alpha * T; |
|
rgb_ray += weight * rgb; |
|
hitpoint += weight * pos; |
|
depth_ray += weight * cur_depth; |
|
T *= (1.f - alpha); |
|
|
|
network_output += padded_output_width; |
|
coords_in += 1; |
|
} |
|
hitpoint /= (1.0f - T); |
|
|
|
|
|
|
|
uint32_t ray_idx = ray_indices_in[i]; |
|
rng.advance(ray_idx * N_MAX_RANDOM_SAMPLES_PER_RAY()); |
|
|
|
float img_pdf = 1.0f; |
|
uint32_t img = image_idx(ray_idx, n_rays, n_rays_total, n_training_images, cdf_img, &img_pdf); |
|
Eigen::Vector2i resolution = metadata[img].resolution; |
|
|
|
float xy_pdf = 1.0f; |
|
Vector2f xy = nerf_random_image_pos_training(rng, resolution, snap_to_pixel_centers, cdf_x_cond_y, cdf_y, error_map_cdf_res, img, &xy_pdf); |
|
float max_level = max_level_rand_training ? (random_val(rng) * 2.0f) : 1.0f; |
|
|
|
if (train_with_random_bg_color) { |
|
background_color = random_val_3d(rng); |
|
} |
|
Array3f pre_envmap_background_color = background_color = srgb_to_linear(background_color); |
|
|
|
|
|
Array4f envmap_value; |
|
Vector3f dir; |
|
if (envmap_data) { |
|
dir = rays_in_unnormalized[i].d.normalized(); |
|
envmap_value = read_envmap(envmap_data, envmap_resolution, dir); |
|
background_color = envmap_value.head<3>() + background_color * (1.0f - envmap_value.w()); |
|
} |
|
|
|
Array3f exposure_scale = (0.6931471805599453f * exposure[img]).exp(); |
|
|
|
|
|
Array4f texsamp = read_rgba(xy, resolution, metadata[img].pixels, metadata[img].image_data_type); |
|
|
|
Array3f rgbtarget; |
|
if (train_in_linear_colors || color_space == EColorSpace::Linear) { |
|
rgbtarget = exposure_scale * texsamp.head<3>() + (1.0f - texsamp.w()) * background_color; |
|
|
|
if (!train_in_linear_colors) { |
|
rgbtarget = linear_to_srgb(rgbtarget); |
|
background_color = linear_to_srgb(background_color); |
|
} |
|
} else if (color_space == EColorSpace::SRGB) { |
|
background_color = linear_to_srgb(background_color); |
|
if (texsamp.w() > 0) { |
|
rgbtarget = linear_to_srgb(exposure_scale * texsamp.head<3>() / texsamp.w()) * texsamp.w() + (1.0f - texsamp.w()) * background_color; |
|
} else { |
|
rgbtarget = background_color; |
|
} |
|
} |
|
|
|
if (compacted_numsteps == numsteps) { |
|
|
|
rgb_ray += T * background_color; |
|
} |
|
|
|
|
|
network_output -= padded_output_width * compacted_numsteps; |
|
coords_in -= compacted_numsteps; |
|
|
|
uint32_t compacted_base = atomicAdd(numsteps_counter, compacted_numsteps); |
|
compacted_numsteps = min(max_samples_compacted - min(max_samples_compacted, compacted_base), compacted_numsteps); |
|
numsteps_in[i*2+0] = compacted_numsteps; |
|
numsteps_in[i*2+1] = compacted_base; |
|
if (compacted_numsteps == 0) { |
|
return; |
|
} |
|
|
|
max_level_compacted_ptr += compacted_base; |
|
coords_out += compacted_base; |
|
|
|
dloss_doutput += compacted_base * padded_output_width; |
|
|
|
LossAndGradient lg = loss_and_gradient(rgbtarget, rgb_ray, loss_type); |
|
lg.loss /= img_pdf * xy_pdf; |
|
|
|
float target_depth = rays_in_unnormalized[i].d.norm() * ((depth_supervision_lambda > 0.0f && metadata[img].depth) ? read_depth(xy, resolution, metadata[img].depth) : -1.0f); |
|
LossAndGradient lg_depth = loss_and_gradient(Array3f::Constant(target_depth), Array3f::Constant(depth_ray), depth_loss_type); |
|
float depth_loss_gradient = target_depth > 0.0f ? depth_supervision_lambda * lg_depth.gradient.x() : 0; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float mean_loss = lg.loss.mean(); |
|
if (loss_output) { |
|
loss_output[i] = mean_loss / (float)n_rays; |
|
} |
|
|
|
if (error_map) { |
|
const Vector2f pos = (xy.cwiseProduct(error_map_res.cast<float>()) - Vector2f::Constant(0.5f)).cwiseMax(0.0f).cwiseMin(error_map_res.cast<float>() - Vector2f::Constant(1.0f + 1e-4f)); |
|
const Vector2i pos_int = pos.cast<int>(); |
|
const Vector2f weight = pos - pos_int.cast<float>(); |
|
|
|
Vector2i idx = pos_int.cwiseMin(resolution - Vector2i::Constant(2)).cwiseMax(0); |
|
|
|
auto deposit_val = [&](int x, int y, float val) { |
|
atomicAdd(&error_map[img * error_map_res.prod() + y * error_map_res.x() + x], val); |
|
}; |
|
|
|
if (sharpness_data && aabb.contains(hitpoint)) { |
|
Vector2i sharpness_pos = xy.cwiseProduct(sharpness_resolution.cast<float>()).cast<int>().cwiseMax(0).cwiseMin(sharpness_resolution - Vector2i::Constant(1)); |
|
float sharp = sharpness_data[img * sharpness_resolution.prod() + sharpness_pos.y() * sharpness_resolution.x() + sharpness_pos.x()] + 1e-6f; |
|
|
|
|
|
float grid_sharp = __uint_as_float(atomicMax((uint32_t*)&cascaded_grid_at(hitpoint, sharpness_grid, mip_from_pos(hitpoint)), __float_as_uint(sharp))); |
|
grid_sharp = fmaxf(sharp, grid_sharp); |
|
|
|
mean_loss *= fmaxf(sharp / grid_sharp, 0.01f); |
|
} |
|
|
|
deposit_val(idx.x(), idx.y(), (1 - weight.x()) * (1 - weight.y()) * mean_loss); |
|
deposit_val(idx.x()+1, idx.y(), weight.x() * (1 - weight.y()) * mean_loss); |
|
deposit_val(idx.x(), idx.y()+1, (1 - weight.x()) * weight.y() * mean_loss); |
|
deposit_val(idx.x()+1, idx.y()+1, weight.x() * weight.y() * mean_loss); |
|
} |
|
|
|
loss_scale /= n_rays; |
|
|
|
const float output_l2_reg = rgb_activation == ENerfActivation::Exponential ? 1e-4f : 0.0f; |
|
const float output_l1_reg_density = *mean_density_ptr < NERF_MIN_OPTICAL_THICKNESS() ? 1e-4f : 0.0f; |
|
|
|
|
|
Array3f rgb_ray2 = { 0.f,0.f,0.f }; |
|
float depth_ray2 = 0.f; |
|
T = 1.f; |
|
for (uint32_t j = 0; j < compacted_numsteps; ++j) { |
|
if (max_level_rand_training) { |
|
max_level_compacted_ptr[j] = max_level; |
|
} |
|
|
|
NerfCoordinate* coord_out = coords_out(j); |
|
const NerfCoordinate* coord_in = coords_in(j); |
|
coord_out->copy(*coord_in, coords_out.stride_in_bytes); |
|
|
|
const Vector3f pos = unwarp_position(coord_in->pos.p, aabb); |
|
float depth = (pos - ray_o).norm(); |
|
|
|
float dt = unwarp_dt(coord_in->dt); |
|
const tcnn::vector_t<tcnn::network_precision_t, 4> local_network_output = *(tcnn::vector_t<tcnn::network_precision_t, 4>*)network_output; |
|
const Array3f rgb = network_to_rgb(local_network_output, rgb_activation); |
|
const float density = network_to_density(float(local_network_output[3]), density_activation); |
|
const float alpha = 1.f - __expf(-density * dt); |
|
const float weight = alpha * T; |
|
rgb_ray2 += weight * rgb; |
|
depth_ray2 += weight * depth; |
|
T *= (1.f - alpha); |
|
|
|
|
|
const Array3f suffix = rgb_ray - rgb_ray2; |
|
const Array3f dloss_by_drgb = weight * lg.gradient; |
|
|
|
tcnn::vector_t<tcnn::network_precision_t, 4> local_dL_doutput; |
|
|
|
|
|
local_dL_doutput[0] = loss_scale * (dloss_by_drgb.x() * network_to_rgb_derivative(local_network_output[0], rgb_activation) + fmaxf(0.0f, output_l2_reg * (float)local_network_output[0])); |
|
local_dL_doutput[1] = loss_scale * (dloss_by_drgb.y() * network_to_rgb_derivative(local_network_output[1], rgb_activation) + fmaxf(0.0f, output_l2_reg * (float)local_network_output[1])); |
|
local_dL_doutput[2] = loss_scale * (dloss_by_drgb.z() * network_to_rgb_derivative(local_network_output[2], rgb_activation) + fmaxf(0.0f, output_l2_reg * (float)local_network_output[2])); |
|
|
|
float density_derivative = network_to_density_derivative(float(local_network_output[3]), density_activation); |
|
const float depth_suffix = depth_ray - depth_ray2; |
|
const float depth_supervision = depth_loss_gradient * (T * depth - depth_suffix); |
|
|
|
float dloss_by_dmlp = density_derivative * ( |
|
dt * (lg.gradient.matrix().dot((T * rgb - suffix).matrix()) + depth_supervision) |
|
); |
|
|
|
|
|
|
|
|
|
local_dL_doutput[3] = |
|
loss_scale * dloss_by_dmlp + |
|
(float(local_network_output[3]) < 0.0f ? -output_l1_reg_density : 0.0f) + |
|
(float(local_network_output[3]) > -10.0f && depth < near_distance ? 1e-4f : 0.0f); |
|
; |
|
|
|
*(tcnn::vector_t<tcnn::network_precision_t, 4>*)dloss_doutput = local_dL_doutput; |
|
|
|
dloss_doutput += padded_output_width; |
|
network_output += padded_output_width; |
|
} |
|
|
|
if (exposure_gradient) { |
|
|
|
Array3f dloss_by_dgt = -lg.gradient / xy_pdf; |
|
|
|
if (!train_in_linear_colors) { |
|
dloss_by_dgt /= srgb_to_linear_derivative(rgbtarget); |
|
} |
|
|
|
|
|
Array3f dloss_by_dexposure = loss_scale * dloss_by_dgt * exposure_scale * 0.6931471805599453f; |
|
atomicAdd(&exposure_gradient[img].x(), dloss_by_dexposure.x()); |
|
atomicAdd(&exposure_gradient[img].y(), dloss_by_dexposure.y()); |
|
atomicAdd(&exposure_gradient[img].z(), dloss_by_dexposure.z()); |
|
} |
|
|
|
if (compacted_numsteps == numsteps && envmap_gradient) { |
|
Array3f loss_gradient = lg.gradient; |
|
if (envmap_loss_type != loss_type) { |
|
loss_gradient = loss_and_gradient(rgbtarget, rgb_ray, envmap_loss_type).gradient; |
|
} |
|
|
|
Array3f dloss_by_dbackground = T * loss_gradient; |
|
if (!train_in_linear_colors) { |
|
dloss_by_dbackground /= srgb_to_linear_derivative(background_color); |
|
} |
|
|
|
tcnn::vector_t<tcnn::network_precision_t, 4> dL_denvmap; |
|
dL_denvmap[0] = loss_scale * dloss_by_dbackground.x(); |
|
dL_denvmap[1] = loss_scale * dloss_by_dbackground.y(); |
|
dL_denvmap[2] = loss_scale * dloss_by_dbackground.z(); |
|
|
|
|
|
float dloss_by_denvmap_alpha = dloss_by_dbackground.matrix().dot(-pre_envmap_background_color.matrix()); |
|
|
|
|
|
dL_denvmap[3] = (tcnn::network_precision_t)0; |
|
|
|
deposit_envmap_gradient(dL_denvmap, envmap_gradient, envmap_resolution, dir); |
|
} |
|
} |
|
|
|
|
|
__global__ void compute_cam_gradient_train_nerf( |
|
const uint32_t n_rays, |
|
const uint32_t n_rays_total, |
|
default_rng_t rng, |
|
const BoundingBox aabb, |
|
const uint32_t* __restrict__ rays_counter, |
|
const TrainingXForm* training_xforms, |
|
bool snap_to_pixel_centers, |
|
Vector3f* cam_pos_gradient, |
|
Vector3f* cam_rot_gradient, |
|
const uint32_t n_training_images, |
|
const TrainingImageMetadata* __restrict__ metadata, |
|
const uint32_t* __restrict__ ray_indices_in, |
|
const Ray* __restrict__ rays_in_unnormalized, |
|
uint32_t* __restrict__ numsteps_in, |
|
PitchedPtr<NerfCoordinate> coords, |
|
PitchedPtr<NerfCoordinate> coords_gradient, |
|
float* __restrict__ distortion_gradient, |
|
float* __restrict__ distortion_gradient_weight, |
|
const Vector2i distortion_resolution, |
|
Vector2f* cam_focal_length_gradient, |
|
const float* __restrict__ cdf_x_cond_y, |
|
const float* __restrict__ cdf_y, |
|
const float* __restrict__ cdf_img, |
|
const Vector2i error_map_res |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= *rays_counter) { return; } |
|
|
|
|
|
uint32_t numsteps = numsteps_in[i*2+0]; |
|
if (numsteps == 0) { |
|
|
|
return; |
|
} |
|
|
|
uint32_t base = numsteps_in[i*2+1]; |
|
coords += base; |
|
coords_gradient += base; |
|
|
|
|
|
|
|
uint32_t ray_idx = ray_indices_in[i]; |
|
uint32_t img = image_idx(ray_idx, n_rays, n_rays_total, n_training_images, cdf_img); |
|
Eigen::Vector2i resolution = metadata[img].resolution; |
|
|
|
const Matrix<float, 3, 4>& xform = training_xforms[img].start; |
|
|
|
Ray ray = rays_in_unnormalized[i]; |
|
ray.d = ray.d.normalized(); |
|
Ray ray_gradient = { Vector3f::Zero(), Vector3f::Zero() }; |
|
|
|
|
|
for (uint32_t j = 0; j < numsteps; ++j) { |
|
|
|
|
|
const Vector3f warped_pos = coords(j)->pos.p; |
|
const Vector3f pos_gradient = coords_gradient(j)->pos.p.cwiseProduct(warp_position_derivative(warped_pos, aabb)); |
|
ray_gradient.o += pos_gradient; |
|
const Vector3f pos = unwarp_position(warped_pos, aabb); |
|
|
|
|
|
|
|
float t = (pos - ray.o).norm(); |
|
const Vector3f dir_gradient = coords_gradient(j)->dir.d.cwiseProduct(warp_direction_derivative(coords(j)->dir.d)); |
|
ray_gradient.d += pos_gradient * t + dir_gradient; |
|
} |
|
|
|
rng.advance(ray_idx * N_MAX_RANDOM_SAMPLES_PER_RAY()); |
|
float xy_pdf = 1.0f; |
|
|
|
Vector2f xy = nerf_random_image_pos_training(rng, resolution, snap_to_pixel_centers, cdf_x_cond_y, cdf_y, error_map_res, img, &xy_pdf); |
|
|
|
if (distortion_gradient) { |
|
|
|
|
|
Vector3f orthogonal_ray_gradient = ray_gradient.d - ray.d * ray_gradient.d.dot(ray.d); |
|
|
|
|
|
|
|
|
|
Vector3f image_plane_gradient = xform.block<3,3>(0,0).inverse() * orthogonal_ray_gradient; |
|
|
|
|
|
deposit_image_gradient<2>(image_plane_gradient.head<2>() / xy_pdf, distortion_gradient, distortion_gradient_weight, distortion_resolution, xy); |
|
} |
|
|
|
if (cam_pos_gradient) { |
|
|
|
NGP_PRAGMA_UNROLL |
|
for (uint32_t j = 0; j < 3; ++j) { |
|
atomicAdd(&cam_pos_gradient[img][j], ray_gradient.o[j] / xy_pdf); |
|
} |
|
} |
|
|
|
if (cam_rot_gradient) { |
|
|
|
|
|
|
|
|
|
Vector3f angle_axis = ray.d.cross(ray_gradient.d); |
|
|
|
|
|
NGP_PRAGMA_UNROLL |
|
for (uint32_t j = 0; j < 3; ++j) { |
|
atomicAdd(&cam_rot_gradient[img][j], angle_axis[j] / xy_pdf); |
|
} |
|
} |
|
} |
|
|
|
__global__ void compute_extra_dims_gradient_train_nerf( |
|
const uint32_t n_rays, |
|
const uint32_t n_rays_total, |
|
const uint32_t* __restrict__ rays_counter, |
|
float* extra_dims_gradient, |
|
uint32_t n_extra_dims, |
|
const uint32_t n_training_images, |
|
const uint32_t* __restrict__ ray_indices_in, |
|
uint32_t* __restrict__ numsteps_in, |
|
PitchedPtr<NerfCoordinate> coords_gradient, |
|
const float* __restrict__ cdf_img |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= *rays_counter) { return; } |
|
|
|
|
|
uint32_t numsteps = numsteps_in[i*2+0]; |
|
if (numsteps == 0) { |
|
|
|
return; |
|
} |
|
uint32_t base = numsteps_in[i*2+1]; |
|
coords_gradient += base; |
|
|
|
|
|
uint32_t ray_idx = ray_indices_in[i]; |
|
uint32_t img = image_idx(ray_idx, n_rays, n_rays_total, n_training_images, cdf_img); |
|
|
|
extra_dims_gradient += n_extra_dims * img; |
|
|
|
for (uint32_t j = 0; j < numsteps; ++j) { |
|
const float *src = coords_gradient(j)->get_extra_dims(); |
|
for (uint32_t k = 0; k < n_extra_dims; ++k) { |
|
atomicAdd(&extra_dims_gradient[k], src[k]); |
|
} |
|
} |
|
} |
|
|
|
__global__ void shade_kernel_nerf( |
|
const uint32_t n_elements, |
|
Array4f* __restrict__ rgba, |
|
float* __restrict__ depth, |
|
NerfPayload* __restrict__ payloads, |
|
ERenderMode render_mode, |
|
bool train_in_linear_colors, |
|
Array4f* __restrict__ frame_buffer, |
|
float* __restrict__ depth_buffer |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
NerfPayload& payload = payloads[i]; |
|
|
|
Array4f tmp = rgba[i]; |
|
|
|
if (render_mode == ERenderMode::Normals) { |
|
Array3f n = tmp.head<3>().matrix().normalized().array(); |
|
tmp.head<3>() = (0.5f * n + Array3f::Constant(0.5f)) * tmp.w(); |
|
} else if (render_mode == ERenderMode::Cost) { |
|
float col = (float)payload.n_steps / 128; |
|
tmp = {col, col, col, 1.0f}; |
|
} |
|
|
|
if (!train_in_linear_colors && (render_mode == ERenderMode::Shade || render_mode == ERenderMode::Slice)) { |
|
|
|
tmp.head<3>() = srgb_to_linear(tmp.head<3>()); |
|
} |
|
|
|
frame_buffer[payload.idx] = tmp + frame_buffer[payload.idx] * (1.0f - tmp.w()); |
|
if (render_mode != ERenderMode::Slice && tmp.w() > 0.2f) { |
|
depth_buffer[payload.idx] = depth[i]; |
|
} |
|
} |
|
|
|
__global__ void compact_kernel_nerf( |
|
const uint32_t n_elements, |
|
Array4f* src_rgba, float* src_depth, NerfPayload* src_payloads, |
|
Array4f* dst_rgba, float* dst_depth, NerfPayload* dst_payloads, |
|
Array4f* dst_final_rgba, float* dst_final_depth, NerfPayload* dst_final_payloads, |
|
uint32_t* counter, uint32_t* finalCounter |
|
) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= n_elements) return; |
|
|
|
NerfPayload& src_payload = src_payloads[i]; |
|
|
|
if (src_payload.alive) { |
|
uint32_t idx = atomicAdd(counter, 1); |
|
dst_payloads[idx] = src_payload; |
|
dst_rgba[idx] = src_rgba[i]; |
|
dst_depth[idx] = src_depth[i]; |
|
} else if (src_rgba[i].w() > 0.001f) { |
|
uint32_t idx = atomicAdd(finalCounter, 1); |
|
dst_final_payloads[idx] = src_payload; |
|
dst_final_rgba[idx] = src_rgba[i]; |
|
dst_final_depth[idx] = src_depth[i]; |
|
} |
|
} |
|
|
|
__global__ void init_rays_with_payload_kernel_nerf( |
|
uint32_t sample_index, |
|
NerfPayload* __restrict__ payloads, |
|
Vector2i resolution, |
|
Vector2f focal_length, |
|
Matrix<float, 3, 4> camera_matrix0, |
|
Matrix<float, 3, 4> camera_matrix1, |
|
Vector4f rolling_shutter, |
|
Vector2f screen_center, |
|
Vector3f parallax_shift, |
|
bool snap_to_pixel_centers, |
|
BoundingBox render_aabb, |
|
Matrix3f render_aabb_to_local, |
|
float near_distance, |
|
float plane_z, |
|
float aperture_size, |
|
Lens lens, |
|
const float* __restrict__ envmap_data, |
|
const Vector2i envmap_resolution, |
|
Array4f* __restrict__ framebuffer, |
|
float* __restrict__ depthbuffer, |
|
const float* __restrict__ distortion_data, |
|
const Vector2i distortion_resolution, |
|
ERenderMode render_mode, |
|
Vector2i quilting_dims |
|
) { |
|
uint32_t x = threadIdx.x + blockDim.x * blockIdx.x; |
|
uint32_t y = threadIdx.y + blockDim.y * blockIdx.y; |
|
|
|
if (x >= resolution.x() || y >= resolution.y()) { |
|
return; |
|
} |
|
|
|
uint32_t idx = x + resolution.x() * y; |
|
|
|
if (plane_z < 0) { |
|
aperture_size = 0.0; |
|
} |
|
|
|
if (quilting_dims != Vector2i::Ones()) { |
|
apply_quilting(&x, &y, resolution, parallax_shift, quilting_dims); |
|
} |
|
|
|
|
|
float u = (x + 0.5f) * (1.f / resolution.x()); |
|
float v = (y + 0.5f) * (1.f / resolution.y()); |
|
float ray_time = rolling_shutter.x() + rolling_shutter.y() * u + rolling_shutter.z() * v + rolling_shutter.w() * ld_random_val(sample_index, idx * 72239731); |
|
Ray ray = pixel_to_ray( |
|
sample_index, |
|
{x, y}, |
|
resolution.cwiseQuotient(quilting_dims), |
|
focal_length, |
|
camera_matrix0 * ray_time + camera_matrix1 * (1.f - ray_time), |
|
screen_center, |
|
parallax_shift, |
|
snap_to_pixel_centers, |
|
near_distance, |
|
plane_z, |
|
aperture_size, |
|
lens, |
|
distortion_data, |
|
distortion_resolution |
|
); |
|
|
|
NerfPayload& payload = payloads[idx]; |
|
payload.max_weight = 0.0f; |
|
|
|
if (plane_z < 0) { |
|
float n = ray.d.norm(); |
|
payload.origin = ray.o; |
|
payload.dir = (1.0f/n) * ray.d; |
|
payload.t = -plane_z*n; |
|
payload.idx = idx; |
|
payload.n_steps = 0; |
|
payload.alive = false; |
|
depthbuffer[idx] = -plane_z; |
|
return; |
|
} |
|
|
|
depthbuffer[idx] = 1e10f; |
|
|
|
ray.d = ray.d.normalized(); |
|
|
|
if (envmap_data) { |
|
framebuffer[idx] = read_envmap(envmap_data, envmap_resolution, ray.d); |
|
} |
|
|
|
float t = fmaxf(render_aabb.ray_intersect(render_aabb_to_local * ray.o, render_aabb_to_local * ray.d).x(), 0.0f) + 1e-6f; |
|
|
|
if (!render_aabb.contains(render_aabb_to_local * (ray.o + ray.d * t))) { |
|
payload.origin = ray.o; |
|
payload.alive = false; |
|
return; |
|
} |
|
|
|
if (render_mode == ERenderMode::Distortion) { |
|
Vector2f offset = Vector2f::Zero(); |
|
if (distortion_data) { |
|
offset += read_image<2>(distortion_data, distortion_resolution, Vector2f((float)x + 0.5f, (float)y + 0.5f).cwiseQuotient(resolution.cast<float>())); |
|
} |
|
framebuffer[idx].head<3>() = to_rgb(offset * 50.0f); |
|
framebuffer[idx].w() = 1.0f; |
|
depthbuffer[idx] = 1.0f; |
|
payload.origin = ray.o + ray.d * 10000.0f; |
|
payload.alive = false; |
|
return; |
|
} |
|
|
|
payload.origin = ray.o; |
|
payload.dir = ray.d; |
|
payload.t = t; |
|
payload.idx = idx; |
|
payload.n_steps = 0; |
|
payload.alive = true; |
|
} |
|
|
|
static constexpr float MIN_PDF = 0.01f; |
|
|
|
__global__ void construct_cdf_2d( |
|
uint32_t n_images, |
|
uint32_t height, |
|
uint32_t width, |
|
const float* __restrict__ data, |
|
float* __restrict__ cdf_x_cond_y, |
|
float* __restrict__ cdf_y |
|
) { |
|
const uint32_t y = threadIdx.x + blockIdx.x * blockDim.x; |
|
const uint32_t img = threadIdx.y + blockIdx.y * blockDim.y; |
|
if (y >= height || img >= n_images) return; |
|
|
|
const uint32_t offset_xy = img * height * width + y * width; |
|
data += offset_xy; |
|
cdf_x_cond_y += offset_xy; |
|
|
|
float cum = 0; |
|
for (uint32_t x = 0; x < width; ++x) { |
|
cum += data[x] + 1e-10f; |
|
cdf_x_cond_y[x] = cum; |
|
} |
|
|
|
cdf_y[img * height + y] = cum; |
|
float norm = __frcp_rn(cum); |
|
|
|
for (uint32_t x = 0; x < width; ++x) { |
|
cdf_x_cond_y[x] = (1.0f - MIN_PDF) * cdf_x_cond_y[x] * norm + MIN_PDF * (float)(x+1) / (float)width; |
|
} |
|
} |
|
|
|
__global__ void construct_cdf_1d( |
|
uint32_t n_images, |
|
uint32_t height, |
|
float* __restrict__ cdf_y, |
|
float* __restrict__ cdf_img |
|
) { |
|
const uint32_t img = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (img >= n_images) return; |
|
|
|
cdf_y += img * height; |
|
|
|
float cum = 0; |
|
for (uint32_t y = 0; y < height; ++y) { |
|
cum += cdf_y[y]; |
|
cdf_y[y] = cum; |
|
} |
|
|
|
cdf_img[img] = cum; |
|
|
|
float norm = __frcp_rn(cum); |
|
for (uint32_t y = 0; y < height; ++y) { |
|
cdf_y[y] = (1.0f - MIN_PDF) * cdf_y[y] * norm + MIN_PDF * (float)(y+1) / (float)height; |
|
} |
|
} |
|
|
|
__global__ void safe_divide(const uint32_t num_elements, float* __restrict__ inout, const float* __restrict__ divisor) { |
|
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x; |
|
if (i >= num_elements) return; |
|
|
|
float local_divisor = divisor[i]; |
|
inout[i] = local_divisor > 0.0f ? (inout[i] / local_divisor) : 0.0f; |
|
} |
|
|
|
void Testbed::NerfTracer::init_rays_from_camera( |
|
uint32_t sample_index, |
|
uint32_t padded_output_width, |
|
uint32_t n_extra_dims, |
|
const Vector2i& resolution, |
|
const Vector2f& focal_length, |
|
const Matrix<float, 3, 4>& camera_matrix0, |
|
const Matrix<float, 3, 4>& camera_matrix1, |
|
const Vector4f& rolling_shutter, |
|
const Vector2f& screen_center, |
|
const Vector3f& parallax_shift, |
|
const Vector2i& quilting_dims, |
|
bool snap_to_pixel_centers, |
|
const BoundingBox& render_aabb, |
|
const Matrix3f& render_aabb_to_local, |
|
float near_distance, |
|
float plane_z, |
|
float aperture_size, |
|
const Lens& lens, |
|
const float* envmap_data, |
|
const Vector2i& envmap_resolution, |
|
const float* distortion_data, |
|
const Vector2i& distortion_resolution, |
|
Eigen::Array4f* frame_buffer, |
|
float* depth_buffer, |
|
uint8_t* grid, |
|
int show_accel, |
|
float cone_angle_constant, |
|
ERenderMode render_mode, |
|
cudaStream_t stream |
|
) { |
|
|
|
size_t n_pixels = (size_t)resolution.x() * resolution.y(); |
|
enlarge(n_pixels, padded_output_width, n_extra_dims, stream); |
|
|
|
const dim3 threads = { 16, 8, 1 }; |
|
const dim3 blocks = { div_round_up((uint32_t)resolution.x(), threads.x), div_round_up((uint32_t)resolution.y(), threads.y), 1 }; |
|
init_rays_with_payload_kernel_nerf<<<blocks, threads, 0, stream>>>( |
|
sample_index, |
|
m_rays[0].payload, |
|
resolution, |
|
focal_length, |
|
camera_matrix0, |
|
camera_matrix1, |
|
rolling_shutter, |
|
screen_center, |
|
parallax_shift, |
|
snap_to_pixel_centers, |
|
render_aabb, |
|
render_aabb_to_local, |
|
near_distance, |
|
plane_z, |
|
aperture_size, |
|
lens, |
|
envmap_data, |
|
envmap_resolution, |
|
frame_buffer, |
|
depth_buffer, |
|
distortion_data, |
|
distortion_resolution, |
|
render_mode, |
|
quilting_dims |
|
); |
|
|
|
m_n_rays_initialized = resolution.x() * resolution.y(); |
|
|
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_rays[0].rgba, 0, m_n_rays_initialized * sizeof(Array4f), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_rays[0].depth, 0, m_n_rays_initialized * sizeof(float), stream)); |
|
|
|
linear_kernel(advance_pos_nerf, 0, stream, |
|
m_n_rays_initialized, |
|
render_aabb, |
|
render_aabb_to_local, |
|
camera_matrix1.col(2), |
|
focal_length, |
|
sample_index, |
|
m_rays[0].payload, |
|
grid, |
|
(show_accel >= 0) ? show_accel : 0, |
|
cone_angle_constant |
|
); |
|
} |
|
|
|
uint32_t Testbed::NerfTracer::trace( |
|
NerfNetwork<network_precision_t>& network, |
|
const BoundingBox& render_aabb, |
|
const Eigen::Matrix3f& render_aabb_to_local, |
|
const BoundingBox& train_aabb, |
|
const uint32_t n_training_images, |
|
const TrainingXForm* training_xforms, |
|
const Vector2f& focal_length, |
|
float cone_angle_constant, |
|
const uint8_t* grid, |
|
ERenderMode render_mode, |
|
const Eigen::Matrix<float, 3, 4> &camera_matrix, |
|
float depth_scale, |
|
int visualized_layer, |
|
int visualized_dim, |
|
ENerfActivation rgb_activation, |
|
ENerfActivation density_activation, |
|
int show_accel, |
|
float min_transmittance, |
|
float glow_y_cutoff, |
|
int glow_mode, |
|
const float* extra_dims_gpu, |
|
cudaStream_t stream |
|
) { |
|
if (m_n_rays_initialized == 0) { |
|
return 0; |
|
} |
|
|
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_hit_counter, 0, sizeof(uint32_t), stream)); |
|
|
|
uint32_t n_alive = m_n_rays_initialized; |
|
|
|
|
|
uint32_t i = 1; |
|
uint32_t double_buffer_index = 0; |
|
while (i < MARCH_ITER) { |
|
RaysNerfSoa& rays_current = m_rays[(double_buffer_index + 1) % 2]; |
|
RaysNerfSoa& rays_tmp = m_rays[double_buffer_index % 2]; |
|
++double_buffer_index; |
|
|
|
|
|
{ |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_alive_counter, 0, sizeof(uint32_t), stream)); |
|
linear_kernel(compact_kernel_nerf, 0, stream, |
|
n_alive, |
|
rays_tmp.rgba, rays_tmp.depth, rays_tmp.payload, |
|
rays_current.rgba, rays_current.depth, rays_current.payload, |
|
m_rays_hit.rgba, m_rays_hit.depth, m_rays_hit.payload, |
|
m_alive_counter, m_hit_counter |
|
); |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(&n_alive, m_alive_counter, sizeof(uint32_t), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK_THROW(cudaStreamSynchronize(stream)); |
|
} |
|
|
|
if (n_alive == 0) { |
|
break; |
|
} |
|
|
|
|
|
uint32_t target_n_queries = 2 * 1024 * 1024; |
|
uint32_t n_steps_between_compaction = tcnn::clamp(target_n_queries / n_alive, (uint32_t)MIN_STEPS_INBETWEEN_COMPACTION, (uint32_t)MAX_STEPS_INBETWEEN_COMPACTION); |
|
|
|
uint32_t extra_stride = network.n_extra_dims() * sizeof(float); |
|
PitchedPtr<NerfCoordinate> input_data((NerfCoordinate*)m_network_input, 1, 0, extra_stride); |
|
linear_kernel(generate_next_nerf_network_inputs, 0, stream, |
|
n_alive, |
|
render_aabb, |
|
render_aabb_to_local, |
|
train_aabb, |
|
focal_length, |
|
camera_matrix.col(2), |
|
rays_current.payload, |
|
input_data, |
|
n_steps_between_compaction, |
|
grid, |
|
(show_accel>=0) ? show_accel : 0, |
|
cone_angle_constant, |
|
extra_dims_gpu |
|
); |
|
uint32_t n_elements = next_multiple(n_alive * n_steps_between_compaction, tcnn::batch_size_granularity); |
|
GPUMatrix<float> positions_matrix((float*)m_network_input, (sizeof(NerfCoordinate) + extra_stride) / sizeof(float), n_elements); |
|
GPUMatrix<network_precision_t, RM> rgbsigma_matrix((network_precision_t*)m_network_output, network.padded_output_width(), n_elements); |
|
network.inference_mixed_precision(stream, positions_matrix, rgbsigma_matrix); |
|
|
|
if (render_mode == ERenderMode::Normals) { |
|
network.input_gradient(stream, 3, positions_matrix, positions_matrix); |
|
} else if (render_mode == ERenderMode::EncodingVis) { |
|
network.visualize_activation(stream, visualized_layer, visualized_dim, positions_matrix, positions_matrix); |
|
} |
|
|
|
linear_kernel(composite_kernel_nerf, 0, stream, |
|
n_alive, |
|
n_elements, |
|
i, |
|
train_aabb, |
|
glow_y_cutoff, |
|
glow_mode, |
|
n_training_images, |
|
training_xforms, |
|
camera_matrix, |
|
focal_length, |
|
depth_scale, |
|
rays_current.rgba, |
|
rays_current.depth, |
|
rays_current.payload, |
|
input_data, |
|
m_network_output, |
|
network.padded_output_width(), |
|
n_steps_between_compaction, |
|
render_mode, |
|
grid, |
|
rgb_activation, |
|
density_activation, |
|
show_accel, |
|
min_transmittance |
|
); |
|
|
|
i += n_steps_between_compaction; |
|
} |
|
|
|
uint32_t n_hit; |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(&n_hit, m_hit_counter, sizeof(uint32_t), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK_THROW(cudaStreamSynchronize(stream)); |
|
return n_hit; |
|
} |
|
|
|
void Testbed::NerfTracer::enlarge(size_t n_elements, uint32_t padded_output_width, uint32_t n_extra_dims, cudaStream_t stream) { |
|
n_elements = next_multiple(n_elements, size_t(tcnn::batch_size_granularity)); |
|
size_t num_floats = sizeof(NerfCoordinate) / 4 + n_extra_dims; |
|
auto scratch = allocate_workspace_and_distribute< |
|
Array4f, float, NerfPayload, |
|
Array4f, float, NerfPayload, |
|
Array4f, float, NerfPayload, |
|
|
|
network_precision_t, |
|
float, |
|
uint32_t, |
|
uint32_t |
|
>( |
|
stream, &m_scratch_alloc, |
|
n_elements, n_elements, n_elements, |
|
n_elements, n_elements, n_elements, |
|
n_elements, n_elements, n_elements, |
|
n_elements * MAX_STEPS_INBETWEEN_COMPACTION * padded_output_width, |
|
n_elements * MAX_STEPS_INBETWEEN_COMPACTION * num_floats, |
|
32, |
|
32 |
|
); |
|
|
|
m_rays[0].set(std::get<0>(scratch), std::get<1>(scratch), std::get<2>(scratch), n_elements); |
|
m_rays[1].set(std::get<3>(scratch), std::get<4>(scratch), std::get<5>(scratch), n_elements); |
|
m_rays_hit.set(std::get<6>(scratch), std::get<7>(scratch), std::get<8>(scratch), n_elements); |
|
|
|
m_network_output = std::get<9>(scratch); |
|
m_network_input = std::get<10>(scratch); |
|
|
|
m_hit_counter = std::get<11>(scratch); |
|
m_alive_counter = std::get<12>(scratch); |
|
} |
|
|
|
void Testbed::Nerf::Training::reset_extra_dims(default_rng_t &rng) { |
|
uint32_t n_extra_dims = dataset.n_extra_dims(); |
|
std::vector<float> extra_dims_cpu(n_extra_dims * (dataset.n_images + 1)); |
|
float *dst = extra_dims_cpu.data(); |
|
ArrayXf zero(n_extra_dims); |
|
zero.setZero(); |
|
extra_dims_opt.resize(dataset.n_images, AdamOptimizer<ArrayXf>(1e-4f, zero)); |
|
for (uint32_t i = 0; i < dataset.n_images; ++i) { |
|
Eigen::Vector3f light_dir = warp_direction(dataset.metadata[i].light_dir.normalized()); |
|
extra_dims_opt[i].reset_state(zero); |
|
Eigen::ArrayXf &optimzer_value = extra_dims_opt[i].variable(); |
|
for (uint32_t j = 0; j < n_extra_dims; ++j) { |
|
if (dataset.has_light_dirs && j < 3) |
|
dst[j] = light_dir[j]; |
|
else |
|
dst[j] = random_val(rng) * 2.f - 1.f; |
|
optimzer_value[j] = dst[j]; |
|
} |
|
dst += n_extra_dims; |
|
} |
|
extra_dims_gpu.resize_and_copy_from_host(extra_dims_cpu); |
|
} |
|
|
|
const float* Testbed::get_inference_extra_dims(cudaStream_t stream) const { |
|
if (m_nerf_network->n_extra_dims() == 0) { |
|
return nullptr; |
|
} |
|
const float* extra_dims_src = m_nerf.training.extra_dims_gpu.data() + m_nerf.extra_dim_idx_for_inference * m_nerf.training.dataset.n_extra_dims(); |
|
if (!m_nerf.training.dataset.has_light_dirs) { |
|
return extra_dims_src; |
|
} |
|
|
|
|
|
|
|
size_t size = m_nerf_network->n_extra_dims() * sizeof(float); |
|
float* dims_gpu = m_nerf.training.extra_dims_gpu.data() + m_nerf.training.dataset.n_images * m_nerf.training.dataset.n_extra_dims(); |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(dims_gpu, extra_dims_src, size, cudaMemcpyDeviceToDevice, stream)); |
|
Eigen::Vector3f light_dir = warp_direction(m_nerf.light_dir.normalized()); |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(dims_gpu, &light_dir, min(size, sizeof(Eigen::Vector3f)), cudaMemcpyHostToDevice, stream)); |
|
return dims_gpu; |
|
} |
|
|
|
void Testbed::render_nerf(CudaRenderBuffer& render_buffer, const Vector2i& max_res, const Vector2f& focal_length, const Matrix<float, 3, 4>& camera_matrix0, const Matrix<float, 3, 4>& camera_matrix1, const Vector4f& rolling_shutter, const Vector2f& screen_center, cudaStream_t stream) { |
|
float plane_z = m_slice_plane_z + m_scale; |
|
if (m_render_mode == ERenderMode::Slice) { |
|
plane_z = -plane_z; |
|
} |
|
|
|
ERenderMode render_mode = m_visualized_dimension > -1 ? ERenderMode::EncodingVis : m_render_mode; |
|
|
|
const float* extra_dims_gpu = get_inference_extra_dims(stream); |
|
|
|
NerfTracer tracer; |
|
|
|
|
|
bool render_opencv_lens = m_nerf.render_with_lens_distortion && (!render_buffer.dlss() || m_nerf.render_lens.mode == ELensMode::OpenCV); |
|
bool render_grid_distortion = m_nerf.render_with_lens_distortion && !render_buffer.dlss(); |
|
|
|
Lens lens = render_opencv_lens ? m_nerf.render_lens : Lens{}; |
|
|
|
|
|
tracer.init_rays_from_camera( |
|
render_buffer.spp(), |
|
m_network->padded_output_width(), |
|
m_nerf_network->n_extra_dims(), |
|
render_buffer.in_resolution(), |
|
focal_length, |
|
camera_matrix0, |
|
camera_matrix1, |
|
rolling_shutter, |
|
screen_center, |
|
m_parallax_shift, |
|
m_quilting_dims, |
|
m_snap_to_pixel_centers, |
|
m_render_aabb, |
|
m_render_aabb_to_local, |
|
m_render_near_distance, |
|
plane_z, |
|
m_aperture_size, |
|
lens, |
|
m_envmap.envmap->inference_params(), |
|
m_envmap.resolution, |
|
render_grid_distortion ? m_distortion.map->inference_params() : nullptr, |
|
m_distortion.resolution, |
|
render_buffer.frame_buffer(), |
|
render_buffer.depth_buffer(), |
|
m_nerf.density_grid_bitfield.data(), |
|
m_nerf.show_accel, |
|
m_nerf.cone_angle_constant, |
|
render_mode, |
|
stream |
|
); |
|
|
|
uint32_t n_hit; |
|
if (m_render_mode == ERenderMode::Slice) { |
|
n_hit = tracer.n_rays_initialized(); |
|
} else { |
|
float depth_scale = 1.0f / m_nerf.training.dataset.scale; |
|
n_hit = tracer.trace( |
|
*m_nerf_network, |
|
m_render_aabb, |
|
m_render_aabb_to_local, |
|
m_aabb, |
|
m_nerf.training.n_images_for_training, |
|
m_nerf.training.transforms.data(), |
|
focal_length, |
|
m_nerf.cone_angle_constant, |
|
m_nerf.density_grid_bitfield.data(), |
|
render_mode, |
|
camera_matrix1, |
|
depth_scale, |
|
m_visualized_layer, |
|
m_visualized_dimension, |
|
m_nerf.rgb_activation, |
|
m_nerf.density_activation, |
|
m_nerf.show_accel, |
|
m_nerf.render_min_transmittance, |
|
m_nerf.glow_y_cutoff, |
|
m_nerf.glow_mode, |
|
extra_dims_gpu, |
|
stream |
|
); |
|
} |
|
RaysNerfSoa& rays_hit = m_render_mode == ERenderMode::Slice ? tracer.rays_init() : tracer.rays_hit(); |
|
|
|
if (m_render_mode == ERenderMode::Slice) { |
|
|
|
uint32_t n_elements = next_multiple(n_hit, tcnn::batch_size_granularity); |
|
const uint32_t floats_per_coord = sizeof(NerfCoordinate) / sizeof(float) + m_nerf_network->n_extra_dims(); |
|
const uint32_t extra_stride = m_nerf_network->n_extra_dims() * sizeof(float); |
|
|
|
GPUMatrix<float> positions_matrix{floats_per_coord, n_elements, stream}; |
|
GPUMatrix<float> rgbsigma_matrix{4, n_elements, stream}; |
|
|
|
linear_kernel(generate_nerf_network_inputs_at_current_position, 0, stream, n_hit, m_aabb, rays_hit.payload, PitchedPtr<NerfCoordinate>((NerfCoordinate*)positions_matrix.data(), 1, 0, extra_stride), extra_dims_gpu ); |
|
|
|
if (m_visualized_dimension == -1) { |
|
m_network->inference(stream, positions_matrix, rgbsigma_matrix); |
|
linear_kernel(compute_nerf_rgba, 0, stream, n_hit, (Array4f*)rgbsigma_matrix.data(), m_nerf.rgb_activation, m_nerf.density_activation, 0.01f, false); |
|
} else { |
|
m_network->visualize_activation(stream, m_visualized_layer, m_visualized_dimension, positions_matrix, rgbsigma_matrix); |
|
} |
|
|
|
linear_kernel(shade_kernel_nerf, 0, stream, |
|
n_hit, |
|
(Array4f*)rgbsigma_matrix.data(), |
|
nullptr, |
|
rays_hit.payload, |
|
m_render_mode, |
|
m_nerf.training.linear_colors, |
|
render_buffer.frame_buffer(), |
|
render_buffer.depth_buffer() |
|
); |
|
return; |
|
} |
|
|
|
linear_kernel(shade_kernel_nerf, 0, stream, |
|
n_hit, |
|
rays_hit.rgba, |
|
rays_hit.depth, |
|
rays_hit.payload, |
|
m_render_mode, |
|
m_nerf.training.linear_colors, |
|
render_buffer.frame_buffer(), |
|
render_buffer.depth_buffer() |
|
); |
|
|
|
if (render_mode == ERenderMode::Cost) { |
|
std::vector<NerfPayload> payloads_final_cpu(n_hit); |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(payloads_final_cpu.data(), rays_hit.payload, n_hit * sizeof(NerfPayload), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK_THROW(cudaStreamSynchronize(stream)); |
|
|
|
size_t total_n_steps = 0; |
|
for (uint32_t i = 0; i < n_hit; ++i) { |
|
total_n_steps += payloads_final_cpu[i].n_steps; |
|
} |
|
tlog::info() << "Total steps per hit= " << total_n_steps << "/" << n_hit << " = " << ((float)total_n_steps/(float)n_hit); |
|
} |
|
} |
|
|
|
void Testbed::Nerf::Training::set_camera_intrinsics(int frame_idx, float fx, float fy, float cx, float cy, float k1, float k2, float p1, float p2) { |
|
if (frame_idx < 0 || frame_idx >= dataset.n_images) { |
|
return; |
|
} |
|
if (fx <= 0.f) fx = fy; |
|
if (fy <= 0.f) fy = fx; |
|
auto& m = dataset.metadata[frame_idx]; |
|
if (cx < 0.f) cx = -cx; else cx = cx / m.resolution.x(); |
|
if (cy < 0.f) cy = -cy; else cy = cy / m.resolution.y(); |
|
ELensMode mode = (k1 || k2 || p1 || p2) ? ELensMode::OpenCV : ELensMode::Perspective; |
|
m.lens = { mode, k1, k2, p1, p2 }; |
|
m.principal_point = { cx, cy }; |
|
m.focal_length = { fx, fy }; |
|
dataset.update_metadata(frame_idx, frame_idx + 1); |
|
} |
|
|
|
void Testbed::Nerf::Training::set_camera_extrinsics_rolling_shutter(int frame_idx, Eigen::Matrix<float, 3, 4> camera_to_world_start, Eigen::Matrix<float, 3, 4> camera_to_world_end, const Vector4f& rolling_shutter, bool convert_to_ngp) { |
|
if (frame_idx < 0 || frame_idx >= dataset.n_images) { |
|
return; |
|
} |
|
|
|
if (convert_to_ngp) { |
|
camera_to_world_start = dataset.nerf_matrix_to_ngp(camera_to_world_start); |
|
camera_to_world_end = dataset.nerf_matrix_to_ngp(camera_to_world_end); |
|
} |
|
|
|
dataset.xforms[frame_idx].start = camera_to_world_start; |
|
dataset.xforms[frame_idx].end = camera_to_world_end; |
|
dataset.metadata[frame_idx].rolling_shutter = rolling_shutter; |
|
dataset.update_metadata(frame_idx, frame_idx + 1); |
|
|
|
cam_rot_offset[frame_idx].reset_state(); |
|
cam_pos_offset[frame_idx].reset_state(); |
|
cam_exposure[frame_idx].reset_state(); |
|
update_transforms(frame_idx, frame_idx + 1); |
|
} |
|
|
|
void Testbed::Nerf::Training::set_camera_extrinsics(int frame_idx, Eigen::Matrix<float, 3, 4> camera_to_world, bool convert_to_ngp) { |
|
set_camera_extrinsics_rolling_shutter(frame_idx, camera_to_world, camera_to_world, Vector4f::Zero(), convert_to_ngp); |
|
} |
|
|
|
void Testbed::Nerf::Training::reset_camera_extrinsics() { |
|
for (auto&& opt : cam_rot_offset) { |
|
opt.reset_state(); |
|
} |
|
|
|
for (auto&& opt : cam_pos_offset) { |
|
opt.reset_state(); |
|
} |
|
|
|
for (auto&& opt : cam_exposure) { |
|
opt.reset_state(); |
|
} |
|
} |
|
|
|
void Testbed::Nerf::Training::export_camera_extrinsics(const std::string& filename, bool export_extrinsics_in_quat_format) { |
|
tlog::info() << "Saving a total of " << n_images_for_training << " poses to " << filename; |
|
nlohmann::json trajectory; |
|
for(int i = 0; i < n_images_for_training; ++i) { |
|
nlohmann::json frame {{"id", i}}; |
|
|
|
const Eigen::Matrix<float, 3, 4> p_nerf = get_camera_extrinsics(i); |
|
if (export_extrinsics_in_quat_format) { |
|
|
|
frame["time"] = i*0.033f; |
|
|
|
const Eigen::Matrix<float, 3, 3> conv_coords_l {{ 0.f, 1.f, 0.f}, |
|
{ 0.f, 0.f, -1.f}, |
|
{-1.f, 0.f, 0.f}}; |
|
const Eigen::Matrix<float, 4, 4> conv_coords_r {{ 1.f, 0.f, 0.f, 0.f}, |
|
{ 0.f, -1.f, 0.f, 0.f}, |
|
{ 0.f, 0.f, -1.f, 0.f}, |
|
{ 0.f, 0.f, 0.f, 1.f}}; |
|
const Eigen::Matrix<float, 3, 4> p_quat = conv_coords_l * p_nerf * conv_coords_r; |
|
|
|
const Eigen::Quaternionf rot_q {p_quat.block<3, 3>(0, 0)}; |
|
frame["q"] = {rot_q.w(), rot_q.x(), rot_q.y(), rot_q.z()}; |
|
frame["t"] = {p_quat(0, 3), p_quat(1, 3), p_quat(2, 3)}; |
|
} else { |
|
frame["transform_matrix"] = {p_nerf.row(0), p_nerf.row(1), p_nerf.row(2)}; |
|
} |
|
|
|
trajectory.emplace_back(frame); |
|
} |
|
std::ofstream file(filename); |
|
file << std::setw(2) << trajectory << std::endl; |
|
} |
|
|
|
Eigen::Matrix<float, 3, 4> Testbed::Nerf::Training::get_camera_extrinsics(int frame_idx) { |
|
if (frame_idx < 0 || frame_idx >= dataset.n_images) { |
|
return Eigen::Matrix<float, 3, 4>::Identity(); |
|
} |
|
return dataset.ngp_matrix_to_nerf(transforms[frame_idx].start); |
|
} |
|
|
|
void Testbed::Nerf::Training::update_transforms(int first, int last) { |
|
if (last < 0) { |
|
last=dataset.n_images; |
|
} |
|
|
|
if (last > dataset.n_images) { |
|
last = dataset.n_images; |
|
} |
|
|
|
int n = last - first; |
|
if (n <= 0) { |
|
return; |
|
} |
|
|
|
if (transforms.size() < last) { |
|
transforms.resize(last); |
|
} |
|
|
|
for (uint32_t i = 0; i < n; ++i) { |
|
auto xform = dataset.xforms[i + first]; |
|
Vector3f rot = cam_rot_offset[i + first].variable(); |
|
float angle = rot.norm(); |
|
rot /= angle; |
|
|
|
if (angle > 0) { |
|
xform.start.block<3, 3>(0, 0) = AngleAxisf(angle, rot) * xform.start.block<3, 3>(0, 0); |
|
xform.end.block<3, 3>(0, 0) = AngleAxisf(angle, rot) * xform.end.block<3, 3>(0, 0); |
|
} |
|
|
|
xform.start.col(3) += cam_pos_offset[i + first].variable(); |
|
xform.end.col(3) += cam_pos_offset[i + first].variable(); |
|
transforms[i + first] = xform; |
|
} |
|
|
|
transforms_gpu.enlarge(last); |
|
CUDA_CHECK_THROW(cudaMemcpy(transforms_gpu.data() + first, transforms.data() + first, n * sizeof(TrainingXForm), cudaMemcpyHostToDevice)); |
|
} |
|
|
|
void Testbed::create_empty_nerf_dataset(size_t n_images, int aabb_scale, bool is_hdr) { |
|
m_data_path = {}; |
|
m_nerf.training.dataset = ngp::create_empty_nerf_dataset(n_images, aabb_scale, is_hdr); |
|
load_nerf(); |
|
m_nerf.training.n_images_for_training = 0; |
|
m_training_data_available = true; |
|
} |
|
|
|
void Testbed::load_nerf_post() { |
|
m_nerf.rgb_activation = m_nerf.training.dataset.is_hdr ? ENerfActivation::Exponential : ENerfActivation::Logistic; |
|
|
|
m_nerf.training.n_images_for_training = (int)m_nerf.training.dataset.n_images; |
|
|
|
m_nerf.training.dataset.update_metadata(); |
|
|
|
m_nerf.training.cam_pos_gradient.resize(m_nerf.training.dataset.n_images, Vector3f::Zero()); |
|
m_nerf.training.cam_pos_gradient_gpu.resize_and_copy_from_host(m_nerf.training.cam_pos_gradient); |
|
|
|
m_nerf.training.cam_exposure.resize(m_nerf.training.dataset.n_images, AdamOptimizer<Array3f>(1e-3f)); |
|
m_nerf.training.cam_pos_offset.resize(m_nerf.training.dataset.n_images, AdamOptimizer<Vector3f>(1e-4f)); |
|
m_nerf.training.cam_rot_offset.resize(m_nerf.training.dataset.n_images, RotationAdamOptimizer(1e-4f)); |
|
m_nerf.training.cam_focal_length_offset = AdamOptimizer<Vector2f>(1e-5f); |
|
|
|
m_nerf.training.cam_rot_gradient.resize(m_nerf.training.dataset.n_images, Vector3f::Zero()); |
|
m_nerf.training.cam_rot_gradient_gpu.resize_and_copy_from_host(m_nerf.training.cam_rot_gradient); |
|
|
|
m_nerf.training.cam_exposure_gradient.resize(m_nerf.training.dataset.n_images, Array3f::Zero()); |
|
m_nerf.training.cam_exposure_gpu.resize_and_copy_from_host(m_nerf.training.cam_exposure_gradient); |
|
m_nerf.training.cam_exposure_gradient_gpu.resize_and_copy_from_host(m_nerf.training.cam_exposure_gradient); |
|
|
|
m_nerf.training.cam_focal_length_gradient = Vector2f::Zero(); |
|
m_nerf.training.cam_focal_length_gradient_gpu.resize_and_copy_from_host(&m_nerf.training.cam_focal_length_gradient, 1); |
|
|
|
m_nerf.training.reset_extra_dims(m_rng); |
|
|
|
if (m_nerf.training.dataset.has_rays) { |
|
m_nerf.training.near_distance = 0.0f; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
float perturb_amount = 0.0f; |
|
if (perturb_amount > 0.f) { |
|
for (uint32_t i = 0; i < m_nerf.training.dataset.n_images; ++i) { |
|
Vector3f rot = random_val_3d(m_rng) * perturb_amount; |
|
float angle = rot.norm(); |
|
rot /= angle; |
|
auto trans = random_val_3d(m_rng); |
|
m_nerf.training.dataset.xforms[i].start.block<3,3>(0,0) = AngleAxisf(angle, rot).matrix() * m_nerf.training.dataset.xforms[i].start.block<3,3>(0,0); |
|
m_nerf.training.dataset.xforms[i].start.col(3) += trans * perturb_amount; |
|
m_nerf.training.dataset.xforms[i].end.block<3,3>(0,0) = AngleAxisf(angle, rot).matrix() * m_nerf.training.dataset.xforms[i].end.block<3,3>(0,0); |
|
m_nerf.training.dataset.xforms[i].end.col(3) += trans * perturb_amount; |
|
} |
|
} |
|
|
|
m_nerf.training.update_transforms(); |
|
|
|
if (!m_nerf.training.dataset.metadata.empty()) { |
|
m_nerf.render_lens = m_nerf.training.dataset.metadata[0].lens; |
|
m_screen_center = Eigen::Vector2f::Constant(1.f) - m_nerf.training.dataset.metadata[0].principal_point; |
|
} |
|
|
|
if (!is_pot(m_nerf.training.dataset.aabb_scale)) { |
|
throw std::runtime_error{fmt::format("NeRF dataset's `aabb_scale` must be a power of two, but is {}.", m_nerf.training.dataset.aabb_scale)}; |
|
} |
|
|
|
int max_aabb_scale = 1 << (NERF_CASCADES()-1); |
|
if (m_nerf.training.dataset.aabb_scale > max_aabb_scale) { |
|
throw std::runtime_error{fmt::format( |
|
"NeRF dataset must have `aabb_scale <= {}`, but is {}. " |
|
"You can increase this limit by factors of 2 by incrementing `NERF_CASCADES()` and re-compiling.", |
|
max_aabb_scale, m_nerf.training.dataset.aabb_scale |
|
)}; |
|
} |
|
|
|
m_aabb = BoundingBox{Vector3f::Constant(0.5f), Vector3f::Constant(0.5f)}; |
|
m_aabb.inflate(0.5f * std::min(1 << (NERF_CASCADES()-1), m_nerf.training.dataset.aabb_scale)); |
|
m_raw_aabb = m_aabb; |
|
m_render_aabb = m_aabb; |
|
m_render_aabb_to_local = m_nerf.training.dataset.render_aabb_to_local; |
|
if (!m_nerf.training.dataset.render_aabb.is_empty()) { |
|
m_render_aabb = m_nerf.training.dataset.render_aabb.intersection(m_aabb); |
|
} |
|
|
|
m_nerf.max_cascade = 0; |
|
while ((1 << m_nerf.max_cascade) < m_nerf.training.dataset.aabb_scale) { |
|
++m_nerf.max_cascade; |
|
} |
|
|
|
|
|
|
|
m_nerf.cone_angle_constant = m_nerf.training.dataset.aabb_scale <= 1 ? 0.0f : (1.0f / 256.0f); |
|
|
|
m_up_dir = m_nerf.training.dataset.up; |
|
} |
|
|
|
void Testbed::load_nerf() { |
|
if (!m_data_path.empty()) { |
|
std::vector<fs::path> json_paths; |
|
if (m_data_path.is_directory()) { |
|
for (const auto& path : fs::directory{m_data_path}) { |
|
if (path.is_file() && equals_case_insensitive(path.extension(), "json")) { |
|
json_paths.emplace_back(path); |
|
} |
|
} |
|
} else if (equals_case_insensitive(m_data_path.extension(), "msgpack")) { |
|
load_snapshot(m_data_path.str()); |
|
set_train(false); |
|
return; |
|
} else if (equals_case_insensitive(m_data_path.extension(), "json")) { |
|
json_paths.emplace_back(m_data_path); |
|
} else { |
|
throw std::runtime_error{"NeRF data path must either be a json file or a directory containing json files."}; |
|
} |
|
|
|
m_nerf.training.dataset = ngp::load_nerf(json_paths, m_nerf.sharpen); |
|
} |
|
|
|
load_nerf_post(); |
|
} |
|
|
|
void Testbed::update_density_grid_nerf(float decay, uint32_t n_uniform_density_grid_samples, uint32_t n_nonuniform_density_grid_samples, cudaStream_t stream) { |
|
const uint32_t n_elements = NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_GRIDSIZE() * (m_nerf.max_cascade + 1); |
|
|
|
m_nerf.density_grid.resize(n_elements); |
|
|
|
const uint32_t n_density_grid_samples = n_uniform_density_grid_samples + n_nonuniform_density_grid_samples; |
|
|
|
const uint32_t padded_output_width = m_nerf_network->padded_density_output_width(); |
|
|
|
GPUMemoryArena::Allocation alloc; |
|
auto scratch = allocate_workspace_and_distribute< |
|
NerfPosition, |
|
uint32_t, |
|
float, |
|
network_precision_t |
|
>(stream, &alloc, n_density_grid_samples, n_elements, n_elements, n_density_grid_samples * padded_output_width); |
|
|
|
NerfPosition* density_grid_positions = std::get<0>(scratch); |
|
uint32_t* density_grid_indices = std::get<1>(scratch); |
|
float* density_grid_tmp = std::get<2>(scratch); |
|
network_precision_t* mlp_out = std::get<3>(scratch); |
|
|
|
if (m_training_step == 0 || m_nerf.training.n_images_for_training != m_nerf.training.n_images_for_training_prev) { |
|
m_nerf.training.n_images_for_training_prev = m_nerf.training.n_images_for_training; |
|
if (m_training_step == 0) { |
|
m_nerf.density_grid_ema_step = 0; |
|
} |
|
|
|
if (!m_nerf.training.dataset.has_rays) { |
|
linear_kernel(mark_untrained_density_grid, 0, stream, n_elements, m_nerf.density_grid.data(), |
|
m_nerf.training.n_images_for_training, |
|
m_nerf.training.dataset.metadata_gpu.data(), |
|
m_nerf.training.transforms_gpu.data(), |
|
m_training_step == 0 |
|
); |
|
} else { |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.density_grid.data(), 0, sizeof(float)*n_elements, stream)); |
|
} |
|
} |
|
|
|
uint32_t n_steps = 1; |
|
for (uint32_t i = 0; i < n_steps; ++i) { |
|
CUDA_CHECK_THROW(cudaMemsetAsync(density_grid_tmp, 0, sizeof(float)*n_elements, stream)); |
|
|
|
linear_kernel(generate_grid_samples_nerf_nonuniform, 0, stream, |
|
n_uniform_density_grid_samples, |
|
m_nerf.training.density_grid_rng, |
|
m_nerf.density_grid_ema_step, |
|
m_aabb, |
|
m_nerf.density_grid.data(), |
|
density_grid_positions, |
|
density_grid_indices, |
|
m_nerf.max_cascade+1, |
|
-0.01f |
|
); |
|
m_nerf.training.density_grid_rng.advance(); |
|
|
|
linear_kernel(generate_grid_samples_nerf_nonuniform, 0, stream, |
|
n_nonuniform_density_grid_samples, |
|
m_nerf.training.density_grid_rng, |
|
m_nerf.density_grid_ema_step, |
|
m_aabb, |
|
m_nerf.density_grid.data(), |
|
density_grid_positions+n_uniform_density_grid_samples, |
|
density_grid_indices+n_uniform_density_grid_samples, |
|
m_nerf.max_cascade+1, |
|
NERF_MIN_OPTICAL_THICKNESS() |
|
); |
|
m_nerf.training.density_grid_rng.advance(); |
|
|
|
GPUMatrix<network_precision_t, RM> density_matrix(mlp_out, padded_output_width, n_density_grid_samples); |
|
GPUMatrix<float> density_grid_position_matrix((float*)density_grid_positions, sizeof(NerfPosition)/sizeof(float), n_density_grid_samples); |
|
m_nerf_network->density(stream, density_grid_position_matrix, density_matrix, false); |
|
|
|
linear_kernel(splat_grid_samples_nerf_max_nearest_neighbor, 0, stream, n_density_grid_samples, density_grid_indices, mlp_out, density_grid_tmp, m_nerf.rgb_activation, m_nerf.density_activation); |
|
linear_kernel(ema_grid_samples_nerf, 0, stream, n_elements, decay, m_nerf.density_grid_ema_step, m_nerf.density_grid.data(), density_grid_tmp); |
|
|
|
++m_nerf.density_grid_ema_step; |
|
} |
|
|
|
update_density_grid_mean_and_bitfield(stream); |
|
} |
|
|
|
void Testbed::update_density_grid_mean_and_bitfield(cudaStream_t stream) { |
|
const uint32_t n_elements = NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_GRIDSIZE(); |
|
|
|
size_t size_including_mips = grid_mip_offset(NERF_CASCADES())/8; |
|
m_nerf.density_grid_bitfield.enlarge(size_including_mips); |
|
m_nerf.density_grid_mean.enlarge(reduce_sum_workspace_size(n_elements)); |
|
|
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.density_grid_mean.data(), 0, sizeof(float), stream)); |
|
reduce_sum(m_nerf.density_grid.data(), [n_elements] __device__ (float val) { return fmaxf(val, 0.f) / (n_elements); }, m_nerf.density_grid_mean.data(), n_elements, stream); |
|
|
|
linear_kernel(grid_to_bitfield, 0, stream, n_elements/8 * NERF_CASCADES(), n_elements/8 * (m_nerf.max_cascade + 1), m_nerf.density_grid.data(), m_nerf.density_grid_bitfield.data(), m_nerf.density_grid_mean.data()); |
|
|
|
for (uint32_t level = 1; level < NERF_CASCADES(); ++level) { |
|
linear_kernel(bitfield_max_pool, 0, stream, n_elements/64, m_nerf.get_density_grid_bitfield_mip(level-1), m_nerf.get_density_grid_bitfield_mip(level)); |
|
} |
|
} |
|
|
|
void Testbed::NerfCounters::prepare_for_training_steps(cudaStream_t stream) { |
|
numsteps_counter.enlarge(1); |
|
numsteps_counter_compacted.enlarge(1); |
|
loss.enlarge(rays_per_batch); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(numsteps_counter.data(), 0, sizeof(uint32_t), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(numsteps_counter_compacted.data(), 0, sizeof(uint32_t), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(loss.data(), 0, sizeof(float)*rays_per_batch, stream)); |
|
} |
|
|
|
float Testbed::NerfCounters::update_after_training(uint32_t target_batch_size, bool get_loss_scalar, cudaStream_t stream) { |
|
std::vector<uint32_t> counter_cpu(1); |
|
std::vector<uint32_t> compacted_counter_cpu(1); |
|
numsteps_counter.copy_to_host(counter_cpu); |
|
numsteps_counter_compacted.copy_to_host(compacted_counter_cpu); |
|
measured_batch_size = 0; |
|
measured_batch_size_before_compaction = 0; |
|
|
|
if (counter_cpu[0] == 0 || compacted_counter_cpu[0] == 0) { |
|
return 0.f; |
|
} |
|
|
|
measured_batch_size_before_compaction = counter_cpu[0]; |
|
measured_batch_size = compacted_counter_cpu[0]; |
|
|
|
float loss_scalar = 0.0; |
|
if (get_loss_scalar) { |
|
loss_scalar = reduce_sum(loss.data(), rays_per_batch, stream) * (float)measured_batch_size / (float)target_batch_size; |
|
} |
|
|
|
rays_per_batch = (uint32_t)((float)rays_per_batch * (float)target_batch_size / (float)measured_batch_size); |
|
rays_per_batch = std::min(next_multiple(rays_per_batch, tcnn::batch_size_granularity), 1u << 18); |
|
|
|
return loss_scalar; |
|
} |
|
|
|
void Testbed::train_nerf(uint32_t target_batch_size, bool get_loss_scalar, cudaStream_t stream) { |
|
if (m_nerf.training.n_images_for_training == 0) { |
|
return; |
|
} |
|
|
|
if (m_nerf.training.include_sharpness_in_error) { |
|
size_t n_cells = NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_CASCADES(); |
|
if (m_nerf.training.sharpness_grid.size() < n_cells) { |
|
m_nerf.training.sharpness_grid.enlarge(NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_CASCADES()); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.sharpness_grid.data(), 0, m_nerf.training.sharpness_grid.get_bytes(), stream)); |
|
} |
|
|
|
if (m_training_step == 0) { |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.sharpness_grid.data(), 0, m_nerf.training.sharpness_grid.get_bytes(), stream)); |
|
} else { |
|
linear_kernel(decay_sharpness_grid_nerf, 0, stream, m_nerf.training.sharpness_grid.size(), 0.95f, m_nerf.training.sharpness_grid.data()); |
|
} |
|
} |
|
m_nerf.training.counters_rgb.prepare_for_training_steps(stream); |
|
|
|
if (m_nerf.training.n_steps_since_cam_update == 0) { |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.cam_pos_gradient_gpu.data(), 0, m_nerf.training.cam_pos_gradient_gpu.get_bytes(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.cam_rot_gradient_gpu.data(), 0, m_nerf.training.cam_rot_gradient_gpu.get_bytes(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.cam_exposure_gradient_gpu.data(), 0, m_nerf.training.cam_exposure_gradient_gpu.get_bytes(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_distortion.map->gradients(), 0, sizeof(float)*m_distortion.map->n_params(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_distortion.map->gradient_weights(), 0, sizeof(float)*m_distortion.map->n_params(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.cam_focal_length_gradient_gpu.data(), 0, m_nerf.training.cam_focal_length_gradient_gpu.get_bytes(), stream)); |
|
} |
|
|
|
bool train_extra_dims = m_nerf.training.dataset.n_extra_learnable_dims > 0 && m_nerf.training.optimize_extra_dims; |
|
uint32_t n_extra_dims = m_nerf.training.dataset.n_extra_dims(); |
|
if (train_extra_dims) { |
|
uint32_t n = n_extra_dims * m_nerf.training.n_images_for_training; |
|
m_nerf.training.extra_dims_gradient_gpu.enlarge(n); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.extra_dims_gradient_gpu.data(), 0, m_nerf.training.extra_dims_gradient_gpu.get_bytes(), stream)); |
|
} |
|
|
|
if (m_nerf.training.n_steps_since_error_map_update == 0 && !m_nerf.training.dataset.metadata.empty()) { |
|
uint32_t n_samples_per_image = (m_nerf.training.n_steps_between_error_map_updates * m_nerf.training.counters_rgb.rays_per_batch) / m_nerf.training.dataset.n_images; |
|
Eigen::Vector2i res = m_nerf.training.dataset.metadata[0].resolution; |
|
m_nerf.training.error_map.resolution = Vector2i::Constant((int)(std::sqrt(std::sqrt((float)n_samples_per_image)) * 3.5f)).cwiseMin(res); |
|
m_nerf.training.error_map.data.resize(m_nerf.training.error_map.resolution.prod() * m_nerf.training.dataset.n_images); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.error_map.data.data(), 0, m_nerf.training.error_map.data.get_bytes(), stream)); |
|
} |
|
|
|
float* envmap_gradient = m_nerf.training.train_envmap ? m_envmap.envmap->gradients() : nullptr; |
|
if (envmap_gradient) { |
|
CUDA_CHECK_THROW(cudaMemsetAsync(envmap_gradient, 0, sizeof(float)*m_envmap.envmap->n_params(), stream)); |
|
} |
|
|
|
|
|
train_nerf_step(target_batch_size, m_nerf.training.counters_rgb, stream); |
|
|
|
|
|
m_trainer->optimizer_step(stream, LOSS_SCALE); |
|
|
|
++m_training_step; |
|
|
|
if (envmap_gradient) { |
|
m_envmap.trainer->optimizer_step(stream, LOSS_SCALE); |
|
} |
|
|
|
float loss_scalar = m_nerf.training.counters_rgb.update_after_training(target_batch_size, get_loss_scalar, stream); |
|
bool zero_records = m_nerf.training.counters_rgb.measured_batch_size == 0; |
|
if (get_loss_scalar) { |
|
m_loss_scalar.update(loss_scalar); |
|
} |
|
|
|
if (zero_records) { |
|
m_loss_scalar.set(0.f); |
|
tlog::warning() << "Nerf training generated 0 samples. Aborting training."; |
|
m_train = false; |
|
} |
|
|
|
|
|
m_nerf.training.n_steps_since_error_map_update += 1; |
|
|
|
|
|
bool accumulate_error = true; |
|
if (accumulate_error && m_nerf.training.n_steps_since_error_map_update >= m_nerf.training.n_steps_between_error_map_updates) { |
|
m_nerf.training.error_map.cdf_resolution = m_nerf.training.error_map.resolution; |
|
m_nerf.training.error_map.cdf_x_cond_y.resize(m_nerf.training.error_map.cdf_resolution.prod() * m_nerf.training.dataset.n_images); |
|
m_nerf.training.error_map.cdf_y.resize(m_nerf.training.error_map.cdf_resolution.y() * m_nerf.training.dataset.n_images); |
|
m_nerf.training.error_map.cdf_img.resize(m_nerf.training.dataset.n_images); |
|
|
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.error_map.cdf_x_cond_y.data(), 0, m_nerf.training.error_map.cdf_x_cond_y.get_bytes(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.error_map.cdf_y.data(), 0, m_nerf.training.error_map.cdf_y.get_bytes(), stream)); |
|
CUDA_CHECK_THROW(cudaMemsetAsync(m_nerf.training.error_map.cdf_img.data(), 0, m_nerf.training.error_map.cdf_img.get_bytes(), stream)); |
|
|
|
const dim3 threads = { 16, 8, 1 }; |
|
const dim3 blocks = { div_round_up((uint32_t)m_nerf.training.error_map.cdf_resolution.y(), threads.x), div_round_up((uint32_t)m_nerf.training.dataset.n_images, threads.y), 1 }; |
|
construct_cdf_2d<<<blocks, threads, 0, stream>>>( |
|
m_nerf.training.dataset.n_images, m_nerf.training.error_map.cdf_resolution.y(), m_nerf.training.error_map.cdf_resolution.x(), |
|
m_nerf.training.error_map.data.data(), |
|
m_nerf.training.error_map.cdf_x_cond_y.data(), |
|
m_nerf.training.error_map.cdf_y.data() |
|
); |
|
linear_kernel(construct_cdf_1d, 0, stream, |
|
m_nerf.training.dataset.n_images, |
|
m_nerf.training.error_map.cdf_resolution.y(), |
|
m_nerf.training.error_map.cdf_y.data(), |
|
m_nerf.training.error_map.cdf_img.data() |
|
); |
|
|
|
|
|
m_nerf.training.error_map.pmf_img_cpu.resize(m_nerf.training.error_map.cdf_img.size()); |
|
m_nerf.training.error_map.cdf_img.copy_to_host(m_nerf.training.error_map.pmf_img_cpu); |
|
std::vector<float> cdf_img_cpu = m_nerf.training.error_map.pmf_img_cpu; |
|
float cum = 0; |
|
for (float& f : cdf_img_cpu) { |
|
cum += f; |
|
f = cum; |
|
} |
|
float norm = 1.0f / cum; |
|
for (size_t i = 0; i < cdf_img_cpu.size(); ++i) { |
|
constexpr float MIN_PMF = 0.1f; |
|
m_nerf.training.error_map.pmf_img_cpu[i] = (1.0f - MIN_PMF) * m_nerf.training.error_map.pmf_img_cpu[i] * norm + MIN_PMF / (float)m_nerf.training.dataset.n_images; |
|
cdf_img_cpu[i] = (1.0f - MIN_PMF) * cdf_img_cpu[i] * norm + MIN_PMF * (float)(i+1) / (float)m_nerf.training.dataset.n_images; |
|
} |
|
m_nerf.training.error_map.cdf_img.copy_from_host(cdf_img_cpu); |
|
|
|
|
|
m_nerf.training.n_steps_since_error_map_update = 0; |
|
m_nerf.training.n_rays_since_error_map_update = 0; |
|
m_nerf.training.error_map.is_cdf_valid = true; |
|
|
|
m_nerf.training.n_steps_between_error_map_updates = (uint32_t)(m_nerf.training.n_steps_between_error_map_updates * 1.5f); |
|
} |
|
|
|
|
|
m_nerf.training.n_steps_since_cam_update += 1; |
|
|
|
|
|
if (train_extra_dims) { |
|
std::vector<float> extra_dims_gradient(m_nerf.training.extra_dims_gradient_gpu.size()); |
|
std::vector<float> &extra_dims_new_values = extra_dims_gradient; |
|
m_nerf.training.extra_dims_gradient_gpu.copy_to_host(extra_dims_gradient); |
|
|
|
for (uint32_t i = 0; i < m_nerf.training.n_images_for_training; ++i) { |
|
ArrayXf gradient(n_extra_dims); |
|
for (uint32_t j = 0; j<n_extra_dims; ++j) { |
|
gradient[j] = extra_dims_gradient[i * n_extra_dims + j] / LOSS_SCALE; |
|
} |
|
|
|
|
|
|
|
|
|
m_nerf.training.extra_dims_opt[i].set_learning_rate(std::max(1e-3f * std::pow(0.33f, (float)(m_nerf.training.extra_dims_opt[i].step() / 128)), m_optimizer->learning_rate()/1000.0f)); |
|
m_nerf.training.extra_dims_opt[i].step(gradient); |
|
|
|
const ArrayXf &value = m_nerf.training.extra_dims_opt[i].variable(); |
|
for (uint32_t j = 0; j < n_extra_dims; ++j) { |
|
extra_dims_new_values[i * n_extra_dims + j] = value[j]; |
|
} |
|
} |
|
|
|
|
|
CUDA_CHECK_THROW(cudaMemcpyAsync(m_nerf.training.extra_dims_gpu.data(), extra_dims_new_values.data(), m_nerf.training.n_images_for_training * n_extra_dims * sizeof(float) , cudaMemcpyHostToDevice, stream)); |
|
} |
|
|
|
bool train_camera = m_nerf.training.optimize_extrinsics || m_nerf.training.optimize_distortion || m_nerf.training.optimize_focal_length || m_nerf.training.optimize_exposure; |
|
if (train_camera && m_nerf.training.n_steps_since_cam_update >= m_nerf.training.n_steps_between_cam_updates) { |
|
float per_camera_loss_scale = (float)m_nerf.training.n_images_for_training / LOSS_SCALE / (float)m_nerf.training.n_steps_between_cam_updates; |
|
|
|
if (m_nerf.training.optimize_extrinsics) { |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(m_nerf.training.cam_pos_gradient.data(), m_nerf.training.cam_pos_gradient_gpu.data(), m_nerf.training.cam_pos_gradient_gpu.get_bytes(), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(m_nerf.training.cam_rot_gradient.data(), m_nerf.training.cam_rot_gradient_gpu.data(), m_nerf.training.cam_rot_gradient_gpu.get_bytes(), cudaMemcpyDeviceToHost, stream)); |
|
|
|
CUDA_CHECK_THROW(cudaStreamSynchronize(stream)); |
|
|
|
|
|
for (uint32_t i = 0; i < m_nerf.training.n_images_for_training; ++i) { |
|
Vector3f pos_gradient = m_nerf.training.cam_pos_gradient[i] * per_camera_loss_scale; |
|
Vector3f rot_gradient = m_nerf.training.cam_rot_gradient[i] * per_camera_loss_scale; |
|
|
|
float l2_reg = m_nerf.training.extrinsic_l2_reg; |
|
pos_gradient += m_nerf.training.cam_pos_offset[i].variable() * l2_reg; |
|
rot_gradient += m_nerf.training.cam_rot_offset[i].variable() * l2_reg; |
|
|
|
m_nerf.training.cam_pos_offset[i].set_learning_rate(std::max(m_nerf.training.extrinsic_learning_rate * std::pow(0.33f, (float)(m_nerf.training.cam_pos_offset[i].step() / 128)), m_optimizer->learning_rate()/1000.0f)); |
|
m_nerf.training.cam_rot_offset[i].set_learning_rate(std::max(m_nerf.training.extrinsic_learning_rate * std::pow(0.33f, (float)(m_nerf.training.cam_rot_offset[i].step() / 128)), m_optimizer->learning_rate()/1000.0f)); |
|
|
|
m_nerf.training.cam_pos_offset[i].step(pos_gradient); |
|
m_nerf.training.cam_rot_offset[i].step(rot_gradient); |
|
} |
|
|
|
m_nerf.training.update_transforms(); |
|
} |
|
|
|
if (m_nerf.training.optimize_distortion) { |
|
linear_kernel(safe_divide, 0, stream, |
|
m_distortion.map->n_params(), |
|
m_distortion.map->gradients(), |
|
m_distortion.map->gradient_weights() |
|
); |
|
m_distortion.trainer->optimizer_step(stream, LOSS_SCALE*(float)m_nerf.training.n_steps_between_cam_updates); |
|
} |
|
|
|
if (m_nerf.training.optimize_focal_length) { |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(m_nerf.training.cam_focal_length_gradient.data(),m_nerf.training.cam_focal_length_gradient_gpu.data(),m_nerf.training.cam_focal_length_gradient_gpu.get_bytes(),cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK_THROW(cudaStreamSynchronize(stream)); |
|
Vector2f focal_length_gradient = m_nerf.training.cam_focal_length_gradient * per_camera_loss_scale; |
|
float l2_reg = m_nerf.training.intrinsic_l2_reg; |
|
focal_length_gradient += m_nerf.training.cam_focal_length_offset.variable() * l2_reg; |
|
m_nerf.training.cam_focal_length_offset.set_learning_rate(std::max(1e-3f * std::pow(0.33f, (float)(m_nerf.training.cam_focal_length_offset.step() / 128)),m_optimizer->learning_rate() / 1000.0f)); |
|
m_nerf.training.cam_focal_length_offset.step(focal_length_gradient); |
|
m_nerf.training.dataset.update_metadata(); |
|
} |
|
|
|
if (m_nerf.training.optimize_exposure) { |
|
CUDA_CHECK_THROW(cudaMemcpyAsync(m_nerf.training.cam_exposure_gradient.data(), m_nerf.training.cam_exposure_gradient_gpu.data(), m_nerf.training.cam_exposure_gradient_gpu.get_bytes(), cudaMemcpyDeviceToHost, stream)); |
|
|
|
Array3f mean_exposure = Array3f::Constant(0.0f); |
|
|
|
|
|
for (uint32_t i = 0; i < m_nerf.training.n_images_for_training; ++i) { |
|
Array3f gradient = m_nerf.training.cam_exposure_gradient[i] * per_camera_loss_scale; |
|
|
|
float l2_reg = m_nerf.training.exposure_l2_reg; |
|
gradient += m_nerf.training.cam_exposure[i].variable() * l2_reg; |
|
|
|
m_nerf.training.cam_exposure[i].set_learning_rate(m_optimizer->learning_rate()); |
|
m_nerf.training.cam_exposure[i].step(gradient); |
|
|
|
mean_exposure += m_nerf.training.cam_exposure[i].variable(); |
|
} |
|
|
|
mean_exposure /= m_nerf.training.n_images_for_training; |
|
|
|
|
|
std::vector<Array3f> cam_exposures(m_nerf.training.n_images_for_training); |
|
for (uint32_t i = 0; i < m_nerf.training.n_images_for_training; ++i) { |
|
cam_exposures[i] = m_nerf.training.cam_exposure[i].variable() -= mean_exposure; |
|
} |
|
|
|
CUDA_CHECK_THROW(cudaMemcpyAsync(m_nerf.training.cam_exposure_gpu.data(), cam_exposures.data(), m_nerf.training.n_images_for_training * sizeof(Array3f), cudaMemcpyHostToDevice, stream)); |
|
} |
|
|
|
m_nerf.training.n_steps_since_cam_update = 0; |
|
} |
|
} |
|
|
|
void Testbed::train_nerf_step(uint32_t target_batch_size, Testbed::NerfCounters& counters, cudaStream_t stream) { |
|
const uint32_t padded_output_width = m_network->padded_output_width(); |
|
const uint32_t max_samples = target_batch_size * 16; |
|
const uint32_t floats_per_coord = sizeof(NerfCoordinate) / sizeof(float) + m_nerf_network->n_extra_dims(); |
|
const uint32_t extra_stride = m_nerf_network->n_extra_dims() * sizeof(float); |
|
|
|
GPUMemoryArena::Allocation alloc; |
|
auto scratch = allocate_workspace_and_distribute< |
|
uint32_t, |
|
Ray, |
|
uint32_t, |
|
float, |
|
float, |
|
network_precision_t, |
|
network_precision_t, |
|
float, |
|
float, |
|
float, |
|
uint32_t |
|
>( |
|
stream, &alloc, |
|
counters.rays_per_batch, |
|
counters.rays_per_batch, |
|
counters.rays_per_batch * 2, |
|
max_samples * floats_per_coord, |
|
max_samples, |
|
std::max(target_batch_size, max_samples) * padded_output_width, |
|
target_batch_size * padded_output_width, |
|
target_batch_size * floats_per_coord, |
|
target_batch_size * floats_per_coord, |
|
target_batch_size, |
|
1 |
|
); |
|
|
|
|
|
uint32_t* ray_indices = std::get<0>(scratch); |
|
Ray* rays_unnormalized = std::get<1>(scratch); |
|
uint32_t* numsteps = std::get<2>(scratch); |
|
float* coords = std::get<3>(scratch); |
|
float* max_level = std::get<4>(scratch); |
|
network_precision_t* mlp_out = std::get<5>(scratch); |
|
network_precision_t* dloss_dmlp_out = std::get<6>(scratch); |
|
float* coords_compacted = std::get<7>(scratch); |
|
float* coords_gradient = std::get<8>(scratch); |
|
float* max_level_compacted = std::get<9>(scratch); |
|
uint32_t* ray_counter = std::get<10>(scratch); |
|
|
|
uint32_t max_inference; |
|
if (counters.measured_batch_size_before_compaction == 0) { |
|
counters.measured_batch_size_before_compaction = max_inference = max_samples; |
|
} else { |
|
max_inference = next_multiple(std::min(counters.measured_batch_size_before_compaction, max_samples), tcnn::batch_size_granularity); |
|
} |
|
|
|
GPUMatrix<float> coords_matrix((float*)coords, floats_per_coord, max_inference); |
|
GPUMatrix<network_precision_t> rgbsigma_matrix(mlp_out, padded_output_width, max_inference); |
|
|
|
GPUMatrix<float> compacted_coords_matrix((float*)coords_compacted, floats_per_coord, target_batch_size); |
|
GPUMatrix<network_precision_t> compacted_rgbsigma_matrix(mlp_out, padded_output_width, target_batch_size); |
|
|
|
GPUMatrix<network_precision_t> gradient_matrix(dloss_dmlp_out, padded_output_width, target_batch_size); |
|
|
|
if (m_training_step == 0) { |
|
counters.n_rays_total = 0; |
|
} |
|
|
|
uint32_t n_rays_total = counters.n_rays_total; |
|
counters.n_rays_total += counters.rays_per_batch; |
|
m_nerf.training.n_rays_since_error_map_update += counters.rays_per_batch; |
|
|
|
|
|
float* envmap_gradient = m_nerf.training.train_envmap ? m_envmap.envmap->gradients() : nullptr; |
|
|
|
bool sample_focal_plane_proportional_to_error = m_nerf.training.error_map.is_cdf_valid && m_nerf.training.sample_focal_plane_proportional_to_error; |
|
bool sample_image_proportional_to_error = m_nerf.training.error_map.is_cdf_valid && m_nerf.training.sample_image_proportional_to_error; |
|
bool include_sharpness_in_error = m_nerf.training.include_sharpness_in_error; |
|
|
|
|
|
bool accumulate_error = true; |
|
|
|
CUDA_CHECK_THROW(cudaMemsetAsync(ray_counter, 0, sizeof(uint32_t), stream)); |
|
|
|
linear_kernel(generate_training_samples_nerf, 0, stream, |
|
counters.rays_per_batch, |
|
m_aabb, |
|
max_inference, |
|
n_rays_total, |
|
m_rng, |
|
ray_counter, |
|
counters.numsteps_counter.data(), |
|
ray_indices, |
|
rays_unnormalized, |
|
numsteps, |
|
PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords, 1, 0, extra_stride), |
|
m_nerf.training.n_images_for_training, |
|
m_nerf.training.dataset.metadata_gpu.data(), |
|
m_nerf.training.transforms_gpu.data(), |
|
m_nerf.density_grid_bitfield.data(), |
|
m_max_level_rand_training, |
|
max_level, |
|
m_nerf.training.snap_to_pixel_centers, |
|
m_nerf.training.train_envmap, |
|
m_nerf.cone_angle_constant, |
|
m_distortion.map->params(), |
|
m_distortion.resolution, |
|
sample_focal_plane_proportional_to_error ? m_nerf.training.error_map.cdf_x_cond_y.data() : nullptr, |
|
sample_focal_plane_proportional_to_error ? m_nerf.training.error_map.cdf_y.data() : nullptr, |
|
sample_image_proportional_to_error ? m_nerf.training.error_map.cdf_img.data() : nullptr, |
|
m_nerf.training.error_map.cdf_resolution, |
|
m_nerf.training.extra_dims_gpu.data(), |
|
m_nerf_network->n_extra_dims() |
|
); |
|
|
|
auto hg_enc = dynamic_cast<GridEncoding<network_precision_t>*>(m_encoding.get()); |
|
if (hg_enc) { |
|
hg_enc->set_max_level_gpu(m_max_level_rand_training ? max_level : nullptr); |
|
} |
|
|
|
m_network->inference_mixed_precision(stream, coords_matrix, rgbsigma_matrix, false); |
|
|
|
if (hg_enc) { |
|
hg_enc->set_max_level_gpu(m_max_level_rand_training ? max_level_compacted : nullptr); |
|
} |
|
|
|
linear_kernel(compute_loss_kernel_train_nerf, 0, stream, |
|
counters.rays_per_batch, |
|
m_aabb, |
|
n_rays_total, |
|
m_rng, |
|
target_batch_size, |
|
ray_counter, |
|
LOSS_SCALE, |
|
padded_output_width, |
|
m_envmap.envmap->params(), |
|
envmap_gradient, |
|
m_envmap.resolution, |
|
m_envmap.loss_type, |
|
m_background_color.head<3>(), |
|
m_color_space, |
|
m_nerf.training.random_bg_color, |
|
m_nerf.training.linear_colors, |
|
m_nerf.training.n_images_for_training, |
|
m_nerf.training.dataset.metadata_gpu.data(), |
|
mlp_out, |
|
counters.numsteps_counter_compacted.data(), |
|
ray_indices, |
|
rays_unnormalized, |
|
numsteps, |
|
PitchedPtr<const NerfCoordinate>((NerfCoordinate*)coords, 1, 0, extra_stride), |
|
PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords_compacted, 1 ,0, extra_stride), |
|
dloss_dmlp_out, |
|
m_nerf.training.loss_type, |
|
m_nerf.training.depth_loss_type, |
|
counters.loss.data(), |
|
m_max_level_rand_training, |
|
max_level_compacted, |
|
m_nerf.rgb_activation, |
|
m_nerf.density_activation, |
|
m_nerf.training.snap_to_pixel_centers, |
|
accumulate_error ? m_nerf.training.error_map.data.data() : nullptr, |
|
sample_focal_plane_proportional_to_error ? m_nerf.training.error_map.cdf_x_cond_y.data() : nullptr, |
|
sample_focal_plane_proportional_to_error ? m_nerf.training.error_map.cdf_y.data() : nullptr, |
|
sample_image_proportional_to_error ? m_nerf.training.error_map.cdf_img.data() : nullptr, |
|
m_nerf.training.error_map.resolution, |
|
m_nerf.training.error_map.cdf_resolution, |
|
include_sharpness_in_error ? m_nerf.training.dataset.sharpness_data.data() : nullptr, |
|
m_nerf.training.dataset.sharpness_resolution, |
|
m_nerf.training.sharpness_grid.data(), |
|
m_nerf.density_grid.data(), |
|
m_nerf.density_grid_mean.data(), |
|
m_nerf.training.cam_exposure_gpu.data(), |
|
m_nerf.training.optimize_exposure ? m_nerf.training.cam_exposure_gradient_gpu.data() : nullptr, |
|
m_nerf.training.depth_supervision_lambda, |
|
m_nerf.training.near_distance |
|
); |
|
|
|
fill_rollover_and_rescale<network_precision_t><<<n_blocks_linear(target_batch_size*padded_output_width), n_threads_linear, 0, stream>>>( |
|
target_batch_size, padded_output_width, counters.numsteps_counter_compacted.data(), dloss_dmlp_out |
|
); |
|
fill_rollover<float><<<n_blocks_linear(target_batch_size * floats_per_coord), n_threads_linear, 0, stream>>>( |
|
target_batch_size, floats_per_coord, counters.numsteps_counter_compacted.data(), (float*)coords_compacted |
|
); |
|
fill_rollover<float><<<n_blocks_linear(target_batch_size), n_threads_linear, 0, stream>>>( |
|
target_batch_size, 1, counters.numsteps_counter_compacted.data(), max_level_compacted |
|
); |
|
|
|
bool train_camera = m_nerf.training.optimize_extrinsics || m_nerf.training.optimize_distortion || m_nerf.training.optimize_focal_length; |
|
bool train_extra_dims = m_nerf.training.dataset.n_extra_learnable_dims > 0 && m_nerf.training.optimize_extra_dims; |
|
bool prepare_input_gradients = train_camera || train_extra_dims; |
|
GPUMatrix<float> coords_gradient_matrix((float*)coords_gradient, floats_per_coord, target_batch_size); |
|
|
|
{ |
|
auto ctx = m_network->forward(stream, compacted_coords_matrix, &compacted_rgbsigma_matrix, false, prepare_input_gradients); |
|
m_network->backward(stream, *ctx, compacted_coords_matrix, compacted_rgbsigma_matrix, gradient_matrix, prepare_input_gradients ? &coords_gradient_matrix : nullptr, false, EGradientMode::Overwrite); |
|
} |
|
|
|
if (train_extra_dims) { |
|
|
|
linear_kernel(compute_extra_dims_gradient_train_nerf, 0, stream, |
|
counters.rays_per_batch, |
|
n_rays_total, |
|
ray_counter, |
|
m_nerf.training.extra_dims_gradient_gpu.data(), |
|
m_nerf.training.dataset.n_extra_dims(), |
|
m_nerf.training.n_images_for_training, |
|
ray_indices, |
|
numsteps, |
|
PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords_gradient, 1, 0, extra_stride), |
|
sample_image_proportional_to_error ? m_nerf.training.error_map.cdf_img.data() : nullptr |
|
); |
|
} |
|
|
|
if (train_camera) { |
|
|
|
linear_kernel(compute_cam_gradient_train_nerf, 0, stream, |
|
counters.rays_per_batch, |
|
n_rays_total, |
|
m_rng, |
|
m_aabb, |
|
ray_counter, |
|
m_nerf.training.transforms_gpu.data(), |
|
m_nerf.training.snap_to_pixel_centers, |
|
m_nerf.training.optimize_extrinsics ? m_nerf.training.cam_pos_gradient_gpu.data() : nullptr, |
|
m_nerf.training.optimize_extrinsics ? m_nerf.training.cam_rot_gradient_gpu.data() : nullptr, |
|
m_nerf.training.n_images_for_training, |
|
m_nerf.training.dataset.metadata_gpu.data(), |
|
ray_indices, |
|
rays_unnormalized, |
|
numsteps, |
|
PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords_compacted, 1, 0, extra_stride), |
|
PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords_gradient, 1, 0, extra_stride), |
|
m_nerf.training.optimize_distortion ? m_distortion.map->gradients() : nullptr, |
|
m_nerf.training.optimize_distortion ? m_distortion.map->gradient_weights() : nullptr, |
|
m_distortion.resolution, |
|
m_nerf.training.optimize_focal_length ? m_nerf.training.cam_focal_length_gradient_gpu.data() : nullptr, |
|
sample_focal_plane_proportional_to_error ? m_nerf.training.error_map.cdf_x_cond_y.data() : nullptr, |
|
sample_focal_plane_proportional_to_error ? m_nerf.training.error_map.cdf_y.data() : nullptr, |
|
sample_image_proportional_to_error ? m_nerf.training.error_map.cdf_img.data() : nullptr, |
|
m_nerf.training.error_map.cdf_resolution |
|
); |
|
} |
|
|
|
m_rng.advance(); |
|
|
|
if (hg_enc) { |
|
hg_enc->set_max_level_gpu(nullptr); |
|
} |
|
} |
|
|
|
|
|
void Testbed::training_prep_nerf(uint32_t batch_size, cudaStream_t stream) { |
|
if (m_nerf.training.n_images_for_training == 0) { |
|
return; |
|
} |
|
|
|
float alpha = m_nerf.training.density_grid_decay; |
|
uint32_t n_cascades = m_nerf.max_cascade+1; |
|
|
|
if (m_training_step < 256) { |
|
update_density_grid_nerf(alpha, NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()*n_cascades, 0, stream); |
|
} else { |
|
update_density_grid_nerf(alpha, NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()/4*n_cascades, NERF_GRIDSIZE()*NERF_GRIDSIZE()*NERF_GRIDSIZE()/4*n_cascades, stream); |
|
} |
|
} |
|
|
|
void Testbed::optimise_mesh_step(uint32_t n_steps) { |
|
uint32_t n_verts = (uint32_t)m_mesh.verts.size(); |
|
if (!n_verts) { |
|
return; |
|
} |
|
|
|
const uint32_t padded_output_width = m_nerf_network->padded_density_output_width(); |
|
const uint32_t floats_per_coord = sizeof(NerfCoordinate) / sizeof(float) + m_nerf_network->n_extra_dims(); |
|
const uint32_t extra_stride = m_nerf_network->n_extra_dims() * sizeof(float); |
|
GPUMemory<float> coords(n_verts * floats_per_coord); |
|
GPUMemory<network_precision_t> mlp_out(n_verts * padded_output_width); |
|
|
|
GPUMatrix<float> positions_matrix((float*)coords.data(), floats_per_coord, n_verts); |
|
GPUMatrix<network_precision_t, RM> density_matrix(mlp_out.data(), padded_output_width, n_verts); |
|
|
|
const float* extra_dims_gpu = get_inference_extra_dims(m_stream.get()); |
|
|
|
for (uint32_t i = 0; i < n_steps; ++i) { |
|
linear_kernel(generate_nerf_network_inputs_from_positions, 0, m_stream.get(), |
|
n_verts, |
|
m_aabb, |
|
m_mesh.verts.data(), |
|
PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords.data(), 1, 0, extra_stride), |
|
extra_dims_gpu |
|
); |
|
|
|
|
|
m_nerf_network->density(m_stream.get(), positions_matrix, density_matrix); |
|
|
|
m_nerf_network->input_gradient(m_stream.get(), 3, positions_matrix, positions_matrix); |
|
|
|
compute_mesh_1ring(m_mesh.verts, m_mesh.indices, m_mesh.verts_smoothed, m_mesh.vert_normals); |
|
|
|
|
|
compute_mesh_opt_gradients( |
|
m_mesh.thresh, |
|
m_mesh.verts, |
|
m_mesh.vert_normals, |
|
m_mesh.verts_smoothed, |
|
mlp_out.data(), |
|
floats_per_coord, |
|
(const float*)coords.data(), |
|
m_mesh.verts_gradient, |
|
m_mesh.smooth_amount, |
|
m_mesh.density_amount, |
|
m_mesh.inflate_amount |
|
); |
|
|
|
|
|
m_mesh.verts_optimizer->step(m_stream.get(), 1.0f, (float*)m_mesh.verts.data(), (float*)m_mesh.verts.data(), (float*)m_mesh.verts_gradient.data()); |
|
} |
|
} |
|
|
|
void Testbed::compute_mesh_vertex_colors() { |
|
uint32_t n_verts = (uint32_t)m_mesh.verts.size(); |
|
if (!n_verts) { |
|
return; |
|
} |
|
|
|
m_mesh.vert_colors.resize(n_verts); |
|
m_mesh.vert_colors.memset(0); |
|
|
|
if (m_testbed_mode == ETestbedMode::Nerf) { |
|
const float* extra_dims_gpu = get_inference_extra_dims(m_stream.get()); |
|
|
|
const uint32_t floats_per_coord = sizeof(NerfCoordinate) / sizeof(float) + m_nerf_network->n_extra_dims(); |
|
const uint32_t extra_stride = m_nerf_network->n_extra_dims() * sizeof(float); |
|
GPUMemory<float> coords(n_verts * floats_per_coord); |
|
GPUMemory<float> mlp_out(n_verts * 4); |
|
|
|
GPUMatrix<float> positions_matrix((float*)coords.data(), floats_per_coord, n_verts); |
|
GPUMatrix<float> color_matrix(mlp_out.data(), 4, n_verts); |
|
linear_kernel(generate_nerf_network_inputs_from_positions, 0, m_stream.get(), n_verts, m_aabb, m_mesh.verts.data(), PitchedPtr<NerfCoordinate>((NerfCoordinate*)coords.data(), 1, 0, extra_stride), extra_dims_gpu); |
|
m_network->inference(m_stream.get(), positions_matrix, color_matrix); |
|
linear_kernel(extract_srgb_with_activation, 0, m_stream.get(), n_verts * 3, 3, mlp_out.data(), (float*)m_mesh.vert_colors.data(), m_nerf.rgb_activation, m_nerf.training.linear_colors); |
|
} |
|
} |
|
|
|
GPUMemory<float> Testbed::get_density_on_grid(Vector3i res3d, const BoundingBox& aabb, const Eigen::Matrix3f& render_aabb_to_local) { |
|
const uint32_t n_elements = (res3d.x()*res3d.y()*res3d.z()); |
|
GPUMemory<float> density(n_elements); |
|
|
|
const uint32_t batch_size = std::min(n_elements, 1u<<20); |
|
bool nerf_mode = m_testbed_mode == ETestbedMode::Nerf; |
|
|
|
const uint32_t padded_output_width = nerf_mode ? m_nerf_network->padded_density_output_width() : m_network->padded_output_width(); |
|
|
|
GPUMemoryArena::Allocation alloc; |
|
auto scratch = allocate_workspace_and_distribute< |
|
NerfPosition, |
|
network_precision_t |
|
>(m_stream.get(), &alloc, n_elements, batch_size * padded_output_width); |
|
|
|
NerfPosition* positions = std::get<0>(scratch); |
|
network_precision_t* mlp_out = std::get<1>(scratch); |
|
|
|
const dim3 threads = { 16, 8, 1 }; |
|
const dim3 blocks = { div_round_up((uint32_t)res3d.x(), threads.x), div_round_up((uint32_t)res3d.y(), threads.y), div_round_up((uint32_t)res3d.z(), threads.z) }; |
|
|
|
BoundingBox unit_cube = BoundingBox{Vector3f::Zero(), Vector3f::Ones()}; |
|
generate_grid_samples_nerf_uniform<<<blocks, threads, 0, m_stream.get()>>>(res3d, m_nerf.density_grid_ema_step, aabb, render_aabb_to_local, nerf_mode ? m_aabb : unit_cube , positions); |
|
|
|
|
|
for (uint32_t offset = 0; offset < n_elements; offset += batch_size) { |
|
uint32_t local_batch_size = std::min(n_elements - offset, batch_size); |
|
|
|
GPUMatrix<network_precision_t, RM> density_matrix(mlp_out, padded_output_width, local_batch_size); |
|
|
|
GPUMatrix<float> positions_matrix((float*)(positions + offset), sizeof(NerfPosition)/sizeof(float), local_batch_size); |
|
if (nerf_mode) { |
|
m_nerf_network->density(m_stream.get(), positions_matrix, density_matrix); |
|
} else { |
|
m_network->inference_mixed_precision(m_stream.get(), positions_matrix, density_matrix); |
|
} |
|
linear_kernel(grid_samples_half_to_float, 0, m_stream.get(), |
|
local_batch_size, |
|
m_aabb, |
|
density.data() + offset , |
|
mlp_out, |
|
m_nerf.density_activation, |
|
positions + offset, |
|
nerf_mode ? m_nerf.density_grid.data() : nullptr, |
|
m_nerf.max_cascade |
|
); |
|
} |
|
|
|
return density; |
|
} |
|
|
|
GPUMemory<Eigen::Array4f> Testbed::get_rgba_on_grid(Vector3i res3d, Eigen::Vector3f ray_dir, bool voxel_centers, float depth, bool density_as_alpha) { |
|
const uint32_t n_elements = (res3d.x()*res3d.y()*res3d.z()); |
|
GPUMemory<Eigen::Array4f> rgba(n_elements); |
|
GPUMemory<NerfCoordinate> positions(n_elements); |
|
const uint32_t batch_size = std::min(n_elements, 1u<<20); |
|
|
|
|
|
const dim3 threads = { 16, 8, 1 }; |
|
const dim3 blocks = { div_round_up((uint32_t)res3d.x(), threads.x), div_round_up((uint32_t)res3d.y(), threads.y), div_round_up((uint32_t)res3d.z(), threads.z) }; |
|
generate_grid_samples_nerf_uniform_dir<<<blocks, threads, 0, m_stream.get()>>>(res3d, m_nerf.density_grid_ema_step, m_render_aabb, m_render_aabb_to_local, m_aabb, ray_dir, positions.data(), voxel_centers); |
|
|
|
|
|
for (uint32_t offset = 0; offset < n_elements; offset += batch_size) { |
|
uint32_t local_batch_size = std::min(n_elements - offset, batch_size); |
|
|
|
|
|
GPUMatrix<float> positions_matrix((float*) (positions.data() + offset), sizeof(NerfCoordinate)/sizeof(float), local_batch_size); |
|
GPUMatrix<float> rgbsigma_matrix((float*) (rgba.data() + offset), 4, local_batch_size); |
|
m_network->inference(m_stream.get(), positions_matrix, rgbsigma_matrix); |
|
|
|
|
|
linear_kernel(compute_nerf_rgba, 0, m_stream.get(), local_batch_size, rgba.data() + offset, m_nerf.rgb_activation, m_nerf.density_activation, depth, density_as_alpha); |
|
} |
|
return rgba; |
|
} |
|
|
|
int Testbed::marching_cubes(Vector3i res3d, const BoundingBox& aabb, const Matrix3f& render_aabb_to_local, float thresh) { |
|
res3d.x() = next_multiple((unsigned int)res3d.x(), 16u); |
|
res3d.y() = next_multiple((unsigned int)res3d.y(), 16u); |
|
res3d.z() = next_multiple((unsigned int)res3d.z(), 16u); |
|
|
|
if (thresh == std::numeric_limits<float>::max()) { |
|
thresh = m_mesh.thresh; |
|
} |
|
|
|
GPUMemory<float> density = get_density_on_grid(res3d, aabb, render_aabb_to_local); |
|
marching_cubes_gpu(m_stream.get(), aabb, render_aabb_to_local, res3d, thresh, density, m_mesh.verts, m_mesh.indices); |
|
|
|
uint32_t n_verts = (uint32_t)m_mesh.verts.size(); |
|
m_mesh.verts_gradient.resize(n_verts); |
|
|
|
m_mesh.trainable_verts = std::make_shared<TrainableBuffer<3, 1, float>>(Matrix<int, 1, 1>{(int)n_verts}); |
|
m_mesh.verts_gradient.copy_from_device(m_mesh.verts); |
|
|
|
pcg32 rnd{m_seed}; |
|
m_mesh.trainable_verts->initialize_params(rnd, (float*)m_mesh.verts.data()); |
|
m_mesh.trainable_verts->set_params((float*)m_mesh.verts.data(), (float*)m_mesh.verts.data(), (float*)m_mesh.verts_gradient.data()); |
|
m_mesh.verts.copy_from_device(m_mesh.verts_gradient); |
|
|
|
m_mesh.verts_optimizer.reset(create_optimizer<float>({ |
|
{"otype", "Adam"}, |
|
{"learning_rate", 1e-4}, |
|
{"beta1", 0.9f}, |
|
{"beta2", 0.99f}, |
|
})); |
|
|
|
m_mesh.verts_optimizer->allocate(m_mesh.trainable_verts); |
|
|
|
compute_mesh_1ring(m_mesh.verts, m_mesh.indices, m_mesh.verts_smoothed, m_mesh.vert_normals); |
|
compute_mesh_vertex_colors(); |
|
|
|
return (int)(m_mesh.indices.size()/3); |
|
} |
|
|
|
uint8_t* Testbed::Nerf::get_density_grid_bitfield_mip(uint32_t mip) { |
|
return density_grid_bitfield.data() + grid_mip_offset(mip)/8; |
|
} |
|
|
|
int Testbed::find_best_training_view(int default_view) { |
|
int bestimage = default_view; |
|
float bestscore = 1000.f; |
|
for (int i = 0; i < m_nerf.training.n_images_for_training; ++i) { |
|
float score = (m_nerf.training.transforms[i].start.col(3) - m_camera.col(3)).norm(); |
|
score += 0.25f * (m_nerf.training.transforms[i].start.col(2) - m_camera.col(2)).norm(); |
|
if (score < bestscore) { |
|
bestscore = score; |
|
bestimage = i; |
|
} |
|
} |
|
return bestimage; |
|
} |
|
|
|
NGP_NAMESPACE_END |
|
|