--- library_name: transformers base_model: cahya/NusaBert-v0.5 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: NusaBert-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8695088344950559 - name: Recall type: recall value: 0.9027263547627061 - name: F1 type: f1 value: 0.885806291800842 - name: Accuracy type: accuracy value: 0.9798333197726454 --- # NusaBert-ner This model is a fine-tuned version of [cahya/NusaBert-v0.5](https://huggingface.co/cahya/NusaBert-v0.5) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1065 - Precision: 0.8695 - Recall: 0.9027 - F1: 0.8858 - Accuracy: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0988 | 1.0 | 1756 | 0.0918 | 0.8335 | 0.8701 | 0.8514 | 0.9732 | | 0.0313 | 2.0 | 3512 | 0.0973 | 0.8639 | 0.8950 | 0.8792 | 0.9778 | | 0.0083 | 3.0 | 5268 | 0.1065 | 0.8695 | 0.9027 | 0.8858 | 0.9798 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0