--- library_name: transformers base_model: cahya/NusaBert-v1.3 tags: - generated_from_trainer datasets: - grit-id/id_nergrit_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: nusabert_nergrit_1.3 results: - task: name: Token Classification type: token-classification dataset: name: grit-id/id_nergrit_corpus ner type: grit-id/id_nergrit_corpus config: ner split: validation args: ner metrics: - name: Precision type: precision value: 0.8010483135824977 - name: Recall type: recall value: 0.8338275412169375 - name: F1 type: f1 value: 0.8171093159760562 - name: Accuracy type: accuracy value: 0.9476653696498054 pipeline_tag: token-classification --- # NusaBert-ner-v1.3 This model is a fine-tuned version of [cahya/NusaBert-v1.3](https://huggingface.co/cahya/NusaBert-v1.3) on the grit-id/id_nergrit_corpus ner dataset. It supports a context length of 8192, the same as the model *cahya/NusaBert-v1.3* which was pre-trained from scratch using ModernBERT architecture. It achieves the following results on the evaluation set: - Loss: 0.2174 - Precision: 0.8010 - Recall: 0.8338 - F1: 0.8171 - Accuracy: 0.9477 ## Model description The dataset contains 19 following entities ``` 'CRD': Cardinal 'DAT': Date 'EVT': Event 'FAC': Facility 'GPE': Geopolitical Entity 'LAW': Law Entity (such as Undang-Undang) 'LOC': Location 'MON': Money 'NOR': Political Organization 'ORD': Ordinal 'ORG': Organization 'PER': Person 'PRC': Percent 'PRD': Product 'QTY': Quantity 'REG': Religion 'TIM': Time 'WOA': Work of Art 'LAN': Language ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 2.19.2 - Tokenizers 0.21.0