--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: text-mod-token-classification-40000-finetuned-ner results: [] --- # text-mod-token-classification-40000-finetuned-ner This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0525 - Accuracy: 0.9880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.037 | 1.0 | 143 | 0.0627 | 0.9754 | | 0.0191 | 2.0 | 286 | 0.0560 | 0.9788 | | 0.0343 | 3.0 | 429 | 0.0495 | 0.9840 | | 0.0082 | 4.0 | 572 | 0.0478 | 0.9853 | | 0.0066 | 5.0 | 715 | 0.0504 | 0.9882 | | 0.0012 | 6.0 | 858 | 0.0525 | 0.9880 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3