--- language: - es - de - fr - pt - en library_name: transformers --- # Model Card for sar-i-65b ## Model Details - **Model Name**: sar-i-65b - **Version**: 1.2 - **Developed by**: BushAI ## Intended Use - **Primary Use Cases**: - Text generation - Language modeling - Natural language understanding tasks - Research and development in NLP - **Out-of-Scope Use Cases**: - Real-time critical applications - High-stakes decision-making systems - Use in contexts where the model's output could be harmful or misleading ## Factors - **Relevant Factors**: - Model performance may vary across different languages and domains. - The model may generate biased or inappropriate content, especially in sensitive contexts. - **Evaluation Factors**: - Performance on benchmark datasets - Human evaluation of generated text - Ethical considerations and potential biases ## Limitations - **Known Limitations**: - The model may generate biased or inappropriate content. - The model may not perform well on low-resource languages or specialized domains. - The model may require significant computational resources for inference. ## Ethical Considerations - **Potential for Harm**: - The model may generate harmful or biased content, especially in sensitive contexts. - The model should not be used in high-stakes decision-making systems. - **Mitigations**: - Regularly evaluate the model for biases and ethical concerns. - Use the model in conjunction with human oversight. - Provide clear guidelines and warnings for users of the model. ## How to Get Started with the Model - **Usage**: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("bushai/sar-i-65b") model = AutoModelForCausalLM.from_pretrained("bushai/sar-i-65b") # Prepare the input text input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt") # Generate text output = model.generate(**inputs, max_length=50) # Decode the output output_text = tokenizer.decode(output[0], skip_special_tokens=True) # Print the generated text print(output_text)``` - **Dependencies**: - transformers - torch