from __future__ import annotations import collections import functools import logging import math import os import threading import warnings from concurrent.futures import Future, ThreadPoolExecutor from itertools import groupby from operator import itemgetter from typing import ( TYPE_CHECKING, Any, Callable, ClassVar, Generic, NamedTuple, Optional, OrderedDict, TypeVar, ) if TYPE_CHECKING: import mmap from typing_extensions import ParamSpec P = ParamSpec("P") else: P = TypeVar("P") T = TypeVar("T") logger = logging.getLogger("fsspec") Fetcher = Callable[[int, int], bytes] # Maps (start, end) to bytes class BaseCache: """Pass-though cache: doesn't keep anything, calls every time Acts as base class for other cachers Parameters ---------- blocksize: int How far to read ahead in numbers of bytes fetcher: func Function of the form f(start, end) which gets bytes from remote as specified size: int How big this file is """ name: ClassVar[str] = "none" def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None: self.blocksize = blocksize self.nblocks = 0 self.fetcher = fetcher self.size = size self.hit_count = 0 self.miss_count = 0 # the bytes that we actually requested self.total_requested_bytes = 0 def _fetch(self, start: int | None, stop: int | None) -> bytes: if start is None: start = 0 if stop is None: stop = self.size if start >= self.size or start >= stop: return b"" return self.fetcher(start, stop) def _reset_stats(self) -> None: """Reset hit and miss counts for a more ganular report e.g. by file.""" self.hit_count = 0 self.miss_count = 0 self.total_requested_bytes = 0 def _log_stats(self) -> str: """Return a formatted string of the cache statistics.""" if self.hit_count == 0 and self.miss_count == 0: # a cache that does nothing, this is for logs only return "" return f" , {self.name}: {self.hit_count} hits, {self.miss_count} misses, {self.total_requested_bytes} total requested bytes" def __repr__(self) -> str: # TODO: use rich for better formatting return f""" <{self.__class__.__name__}: block size : {self.blocksize} block count : {self.nblocks} file size : {self.size} cache hits : {self.hit_count} cache misses: {self.miss_count} total requested bytes: {self.total_requested_bytes}> """ class MMapCache(BaseCache): """memory-mapped sparse file cache Opens temporary file, which is filled blocks-wise when data is requested. Ensure there is enough disc space in the temporary location. This cache method might only work on posix """ name = "mmap" def __init__( self, blocksize: int, fetcher: Fetcher, size: int, location: str | None = None, blocks: set[int] | None = None, ) -> None: super().__init__(blocksize, fetcher, size) self.blocks = set() if blocks is None else blocks self.location = location self.cache = self._makefile() def _makefile(self) -> mmap.mmap | bytearray: import mmap import tempfile if self.size == 0: return bytearray() # posix version if self.location is None or not os.path.exists(self.location): if self.location is None: fd = tempfile.TemporaryFile() self.blocks = set() else: fd = open(self.location, "wb+") fd.seek(self.size - 1) fd.write(b"1") fd.flush() else: fd = open(self.location, "r+b") return mmap.mmap(fd.fileno(), self.size) def _fetch(self, start: int | None, end: int | None) -> bytes: logger.debug(f"MMap cache fetching {start}-{end}") if start is None: start = 0 if end is None: end = self.size if start >= self.size or start >= end: return b"" start_block = start // self.blocksize end_block = end // self.blocksize block_range = range(start_block, end_block + 1) # Determine which blocks need to be fetched. This sequence is sorted by construction. need = (i for i in block_range if i not in self.blocks) # Count the number of blocks already cached self.hit_count += sum(1 for i in block_range if i in self.blocks) # Consolidate needed blocks. # Algorithm adapted from Python 2.x itertools documentation. # We are grouping an enumerated sequence of blocks. By comparing when the difference # between an ascending range (provided by enumerate) and the needed block numbers # we can detect when the block number skips values. The key computes this difference. # Whenever the difference changes, we know that we have previously cached block(s), # and a new group is started. In other words, this algorithm neatly groups # runs of consecutive block numbers so they can be fetched together. for _, _blocks in groupby(enumerate(need), key=lambda x: x[0] - x[1]): # Extract the blocks from the enumerated sequence _blocks = tuple(map(itemgetter(1), _blocks)) # Compute start of first block sstart = _blocks[0] * self.blocksize # Compute the end of the last block. Last block may not be full size. send = min(_blocks[-1] * self.blocksize + self.blocksize, self.size) # Fetch bytes (could be multiple consecutive blocks) self.total_requested_bytes += send - sstart logger.debug( f"MMap get blocks {_blocks[0]}-{_blocks[-1]} ({sstart}-{send})" ) self.cache[sstart:send] = self.fetcher(sstart, send) # Update set of cached blocks self.blocks.update(_blocks) # Update cache statistics with number of blocks we had to cache self.miss_count += len(_blocks) return self.cache[start:end] def __getstate__(self) -> dict[str, Any]: state = self.__dict__.copy() # Remove the unpicklable entries. del state["cache"] return state def __setstate__(self, state: dict[str, Any]) -> None: # Restore instance attributes self.__dict__.update(state) self.cache = self._makefile() class ReadAheadCache(BaseCache): """Cache which reads only when we get beyond a block of data This is a much simpler version of BytesCache, and does not attempt to fill holes in the cache or keep fragments alive. It is best suited to many small reads in a sequential order (e.g., reading lines from a file). """ name = "readahead" def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None: super().__init__(blocksize, fetcher, size) self.cache = b"" self.start = 0 self.end = 0 def _fetch(self, start: int | None, end: int | None) -> bytes: if start is None: start = 0 if end is None or end > self.size: end = self.size if start >= self.size or start >= end: return b"" l = end - start if start >= self.start and end <= self.end: # cache hit self.hit_count += 1 return self.cache[start - self.start : end - self.start] elif self.start <= start < self.end: # partial hit self.miss_count += 1 part = self.cache[start - self.start :] l -= len(part) start = self.end else: # miss self.miss_count += 1 part = b"" end = min(self.size, end + self.blocksize) self.total_requested_bytes += end - start self.cache = self.fetcher(start, end) # new block replaces old self.start = start self.end = self.start + len(self.cache) return part + self.cache[:l] class FirstChunkCache(BaseCache): """Caches the first block of a file only This may be useful for file types where the metadata is stored in the header, but is randomly accessed. """ name = "first" def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None: if blocksize > size: # this will buffer the whole thing blocksize = size super().__init__(blocksize, fetcher, size) self.cache: bytes | None = None def _fetch(self, start: int | None, end: int | None) -> bytes: start = start or 0 if start > self.size: logger.debug("FirstChunkCache: requested start > file size") return b"" end = min(end, self.size) if start < self.blocksize: if self.cache is None: self.miss_count += 1 if end > self.blocksize: self.total_requested_bytes += end data = self.fetcher(0, end) self.cache = data[: self.blocksize] return data[start:] self.cache = self.fetcher(0, self.blocksize) self.total_requested_bytes += self.blocksize part = self.cache[start:end] if end > self.blocksize: self.total_requested_bytes += end - self.blocksize part += self.fetcher(self.blocksize, end) self.hit_count += 1 return part else: self.miss_count += 1 self.total_requested_bytes += end - start return self.fetcher(start, end) class BlockCache(BaseCache): """ Cache holding memory as a set of blocks. Requests are only ever made ``blocksize`` at a time, and are stored in an LRU cache. The least recently accessed block is discarded when more than ``maxblocks`` are stored. Parameters ---------- blocksize : int The number of bytes to store in each block. Requests are only ever made for ``blocksize``, so this should balance the overhead of making a request against the granularity of the blocks. fetcher : Callable size : int The total size of the file being cached. maxblocks : int The maximum number of blocks to cache for. The maximum memory use for this cache is then ``blocksize * maxblocks``. """ name = "blockcache" def __init__( self, blocksize: int, fetcher: Fetcher, size: int, maxblocks: int = 32 ) -> None: super().__init__(blocksize, fetcher, size) self.nblocks = math.ceil(size / blocksize) self.maxblocks = maxblocks self._fetch_block_cached = functools.lru_cache(maxblocks)(self._fetch_block) def cache_info(self): """ The statistics on the block cache. Returns ------- NamedTuple Returned directly from the LRU Cache used internally. """ return self._fetch_block_cached.cache_info() def __getstate__(self) -> dict[str, Any]: state = self.__dict__ del state["_fetch_block_cached"] return state def __setstate__(self, state: dict[str, Any]) -> None: self.__dict__.update(state) self._fetch_block_cached = functools.lru_cache(state["maxblocks"])( self._fetch_block ) def _fetch(self, start: int | None, end: int | None) -> bytes: if start is None: start = 0 if end is None: end = self.size if start >= self.size or start >= end: return b"" # byte position -> block numbers start_block_number = start // self.blocksize end_block_number = end // self.blocksize # these are cached, so safe to do multiple calls for the same start and end. for block_number in range(start_block_number, end_block_number + 1): self._fetch_block_cached(block_number) return self._read_cache( start, end, start_block_number=start_block_number, end_block_number=end_block_number, ) def _fetch_block(self, block_number: int) -> bytes: """ Fetch the block of data for `block_number`. """ if block_number > self.nblocks: raise ValueError( f"'block_number={block_number}' is greater than " f"the number of blocks ({self.nblocks})" ) start = block_number * self.blocksize end = start + self.blocksize self.total_requested_bytes += end - start self.miss_count += 1 logger.info("BlockCache fetching block %d", block_number) block_contents = super()._fetch(start, end) return block_contents def _read_cache( self, start: int, end: int, start_block_number: int, end_block_number: int ) -> bytes: """ Read from our block cache. Parameters ---------- start, end : int The start and end byte positions. start_block_number, end_block_number : int The start and end block numbers. """ start_pos = start % self.blocksize end_pos = end % self.blocksize self.hit_count += 1 if start_block_number == end_block_number: block: bytes = self._fetch_block_cached(start_block_number) return block[start_pos:end_pos] else: # read from the initial out = [self._fetch_block_cached(start_block_number)[start_pos:]] # intermediate blocks # Note: it'd be nice to combine these into one big request. However # that doesn't play nicely with our LRU cache. out.extend( map( self._fetch_block_cached, range(start_block_number + 1, end_block_number), ) ) # final block out.append(self._fetch_block_cached(end_block_number)[:end_pos]) return b"".join(out) class BytesCache(BaseCache): """Cache which holds data in a in-memory bytes object Implements read-ahead by the block size, for semi-random reads progressing through the file. Parameters ---------- trim: bool As we read more data, whether to discard the start of the buffer when we are more than a blocksize ahead of it. """ name: ClassVar[str] = "bytes" def __init__( self, blocksize: int, fetcher: Fetcher, size: int, trim: bool = True ) -> None: super().__init__(blocksize, fetcher, size) self.cache = b"" self.start: int | None = None self.end: int | None = None self.trim = trim def _fetch(self, start: int | None, end: int | None) -> bytes: # TODO: only set start/end after fetch, in case it fails? # is this where retry logic might go? if start is None: start = 0 if end is None: end = self.size if start >= self.size or start >= end: return b"" if ( self.start is not None and start >= self.start and self.end is not None and end < self.end ): # cache hit: we have all the required data offset = start - self.start self.hit_count += 1 return self.cache[offset : offset + end - start] if self.blocksize: bend = min(self.size, end + self.blocksize) else: bend = end if bend == start or start > self.size: return b"" if (self.start is None or start < self.start) and ( self.end is None or end > self.end ): # First read, or extending both before and after self.total_requested_bytes += bend - start self.miss_count += 1 self.cache = self.fetcher(start, bend) self.start = start else: assert self.start is not None assert self.end is not None self.miss_count += 1 if start < self.start: if self.end is None or self.end - end > self.blocksize: self.total_requested_bytes += bend - start self.cache = self.fetcher(start, bend) self.start = start else: self.total_requested_bytes += self.start - start new = self.fetcher(start, self.start) self.start = start self.cache = new + self.cache elif self.end is not None and bend > self.end: if self.end > self.size: pass elif end - self.end > self.blocksize: self.total_requested_bytes += bend - start self.cache = self.fetcher(start, bend) self.start = start else: self.total_requested_bytes += bend - self.end new = self.fetcher(self.end, bend) self.cache = self.cache + new self.end = self.start + len(self.cache) offset = start - self.start out = self.cache[offset : offset + end - start] if self.trim: num = (self.end - self.start) // (self.blocksize + 1) if num > 1: self.start += self.blocksize * num self.cache = self.cache[self.blocksize * num :] return out def __len__(self) -> int: return len(self.cache) class AllBytes(BaseCache): """Cache entire contents of the file""" name: ClassVar[str] = "all" def __init__( self, blocksize: int | None = None, fetcher: Fetcher | None = None, size: int | None = None, data: bytes | None = None, ) -> None: super().__init__(blocksize, fetcher, size) # type: ignore[arg-type] if data is None: self.miss_count += 1 self.total_requested_bytes += self.size data = self.fetcher(0, self.size) self.data = data def _fetch(self, start: int | None, stop: int | None) -> bytes: self.hit_count += 1 return self.data[start:stop] class KnownPartsOfAFile(BaseCache): """ Cache holding known file parts. Parameters ---------- blocksize: int How far to read ahead in numbers of bytes fetcher: func Function of the form f(start, end) which gets bytes from remote as specified size: int How big this file is data: dict A dictionary mapping explicit `(start, stop)` file-offset tuples with known bytes. strict: bool, default True Whether to fetch reads that go beyond a known byte-range boundary. If `False`, any read that ends outside a known part will be zero padded. Note that zero padding will not be used for reads that begin outside a known byte-range. """ name: ClassVar[str] = "parts" def __init__( self, blocksize: int, fetcher: Fetcher, size: int, data: Optional[dict[tuple[int, int], bytes]] = None, strict: bool = True, **_: Any, ): super().__init__(blocksize, fetcher, size) self.strict = strict # simple consolidation of contiguous blocks if data: old_offsets = sorted(data.keys()) offsets = [old_offsets[0]] blocks = [data.pop(old_offsets[0])] for start, stop in old_offsets[1:]: start0, stop0 = offsets[-1] if start == stop0: offsets[-1] = (start0, stop) blocks[-1] += data.pop((start, stop)) else: offsets.append((start, stop)) blocks.append(data.pop((start, stop))) self.data = dict(zip(offsets, blocks)) else: self.data = {} def _fetch(self, start: int | None, stop: int | None) -> bytes: if start is None: start = 0 if stop is None: stop = self.size out = b"" for (loc0, loc1), data in self.data.items(): # If self.strict=False, use zero-padded data # for reads beyond the end of a "known" buffer if loc0 <= start < loc1: off = start - loc0 out = data[off : off + stop - start] if not self.strict or loc0 <= stop <= loc1: # The request is within a known range, or # it begins within a known range, and we # are allowed to pad reads beyond the # buffer with zero out += b"\x00" * (stop - start - len(out)) self.hit_count += 1 return out else: # The request ends outside a known range, # and we are being "strict" about reads # beyond the buffer start = loc1 break # We only get here if there is a request outside the # known parts of the file. In an ideal world, this # should never happen if self.fetcher is None: # We cannot fetch the data, so raise an error raise ValueError(f"Read is outside the known file parts: {(start, stop)}. ") # We can fetch the data, but should warn the user # that this may be slow warnings.warn( f"Read is outside the known file parts: {(start, stop)}. " f"IO/caching performance may be poor!" ) logger.debug(f"KnownPartsOfAFile cache fetching {start}-{stop}") self.total_requested_bytes += stop - start self.miss_count += 1 return out + super()._fetch(start, stop) class UpdatableLRU(Generic[P, T]): """ Custom implementation of LRU cache that allows updating keys Used by BackgroudBlockCache """ class CacheInfo(NamedTuple): hits: int misses: int maxsize: int currsize: int def __init__(self, func: Callable[P, T], max_size: int = 128) -> None: self._cache: OrderedDict[Any, T] = collections.OrderedDict() self._func = func self._max_size = max_size self._hits = 0 self._misses = 0 self._lock = threading.Lock() def __call__(self, *args: P.args, **kwargs: P.kwargs) -> T: if kwargs: raise TypeError(f"Got unexpected keyword argument {kwargs.keys()}") with self._lock: if args in self._cache: self._cache.move_to_end(args) self._hits += 1 return self._cache[args] result = self._func(*args, **kwargs) with self._lock: self._cache[args] = result self._misses += 1 if len(self._cache) > self._max_size: self._cache.popitem(last=False) return result def is_key_cached(self, *args: Any) -> bool: with self._lock: return args in self._cache def add_key(self, result: T, *args: Any) -> None: with self._lock: self._cache[args] = result if len(self._cache) > self._max_size: self._cache.popitem(last=False) def cache_info(self) -> UpdatableLRU.CacheInfo: with self._lock: return self.CacheInfo( maxsize=self._max_size, currsize=len(self._cache), hits=self._hits, misses=self._misses, ) class BackgroundBlockCache(BaseCache): """ Cache holding memory as a set of blocks with pre-loading of the next block in the background. Requests are only ever made ``blocksize`` at a time, and are stored in an LRU cache. The least recently accessed block is discarded when more than ``maxblocks`` are stored. If the next block is not in cache, it is loaded in a separate thread in non-blocking way. Parameters ---------- blocksize : int The number of bytes to store in each block. Requests are only ever made for ``blocksize``, so this should balance the overhead of making a request against the granularity of the blocks. fetcher : Callable size : int The total size of the file being cached. maxblocks : int The maximum number of blocks to cache for. The maximum memory use for this cache is then ``blocksize * maxblocks``. """ name: ClassVar[str] = "background" def __init__( self, blocksize: int, fetcher: Fetcher, size: int, maxblocks: int = 32 ) -> None: super().__init__(blocksize, fetcher, size) self.nblocks = math.ceil(size / blocksize) self.maxblocks = maxblocks self._fetch_block_cached = UpdatableLRU(self._fetch_block, maxblocks) self._thread_executor = ThreadPoolExecutor(max_workers=1) self._fetch_future_block_number: int | None = None self._fetch_future: Future[bytes] | None = None self._fetch_future_lock = threading.Lock() def cache_info(self) -> UpdatableLRU.CacheInfo: """ The statistics on the block cache. Returns ------- NamedTuple Returned directly from the LRU Cache used internally. """ return self._fetch_block_cached.cache_info() def __getstate__(self) -> dict[str, Any]: state = self.__dict__ del state["_fetch_block_cached"] del state["_thread_executor"] del state["_fetch_future_block_number"] del state["_fetch_future"] del state["_fetch_future_lock"] return state def __setstate__(self, state) -> None: self.__dict__.update(state) self._fetch_block_cached = UpdatableLRU(self._fetch_block, state["maxblocks"]) self._thread_executor = ThreadPoolExecutor(max_workers=1) self._fetch_future_block_number = None self._fetch_future = None self._fetch_future_lock = threading.Lock() def _fetch(self, start: int | None, end: int | None) -> bytes: if start is None: start = 0 if end is None: end = self.size if start >= self.size or start >= end: return b"" # byte position -> block numbers start_block_number = start // self.blocksize end_block_number = end // self.blocksize fetch_future_block_number = None fetch_future = None with self._fetch_future_lock: # Background thread is running. Check we we can or must join it. if self._fetch_future is not None: assert self._fetch_future_block_number is not None if self._fetch_future.done(): logger.info("BlockCache joined background fetch without waiting.") self._fetch_block_cached.add_key( self._fetch_future.result(), self._fetch_future_block_number ) # Cleanup the fetch variables. Done with fetching the block. self._fetch_future_block_number = None self._fetch_future = None else: # Must join if we need the block for the current fetch must_join = bool( start_block_number <= self._fetch_future_block_number <= end_block_number ) if must_join: # Copy to the local variables to release lock # before waiting for result fetch_future_block_number = self._fetch_future_block_number fetch_future = self._fetch_future # Cleanup the fetch variables. Have a local copy. self._fetch_future_block_number = None self._fetch_future = None # Need to wait for the future for the current read if fetch_future is not None: logger.info("BlockCache waiting for background fetch.") # Wait until result and put it in cache self._fetch_block_cached.add_key( fetch_future.result(), fetch_future_block_number ) # these are cached, so safe to do multiple calls for the same start and end. for block_number in range(start_block_number, end_block_number + 1): self._fetch_block_cached(block_number) # fetch next block in the background if nothing is running in the background, # the block is within file and it is not already cached end_block_plus_1 = end_block_number + 1 with self._fetch_future_lock: if ( self._fetch_future is None and end_block_plus_1 <= self.nblocks and not self._fetch_block_cached.is_key_cached(end_block_plus_1) ): self._fetch_future_block_number = end_block_plus_1 self._fetch_future = self._thread_executor.submit( self._fetch_block, end_block_plus_1, "async" ) return self._read_cache( start, end, start_block_number=start_block_number, end_block_number=end_block_number, ) def _fetch_block(self, block_number: int, log_info: str = "sync") -> bytes: """ Fetch the block of data for `block_number`. """ if block_number > self.nblocks: raise ValueError( f"'block_number={block_number}' is greater than " f"the number of blocks ({self.nblocks})" ) start = block_number * self.blocksize end = start + self.blocksize logger.info("BlockCache fetching block (%s) %d", log_info, block_number) self.total_requested_bytes += end - start self.miss_count += 1 block_contents = super()._fetch(start, end) return block_contents def _read_cache( self, start: int, end: int, start_block_number: int, end_block_number: int ) -> bytes: """ Read from our block cache. Parameters ---------- start, end : int The start and end byte positions. start_block_number, end_block_number : int The start and end block numbers. """ start_pos = start % self.blocksize end_pos = end % self.blocksize # kind of pointless to count this as a hit, but it is self.hit_count += 1 if start_block_number == end_block_number: block = self._fetch_block_cached(start_block_number) return block[start_pos:end_pos] else: # read from the initial out = [self._fetch_block_cached(start_block_number)[start_pos:]] # intermediate blocks # Note: it'd be nice to combine these into one big request. However # that doesn't play nicely with our LRU cache. out.extend( map( self._fetch_block_cached, range(start_block_number + 1, end_block_number), ) ) # final block out.append(self._fetch_block_cached(end_block_number)[:end_pos]) return b"".join(out) caches: dict[str | None, type[BaseCache]] = { # one custom case None: BaseCache, } def register_cache(cls: type[BaseCache], clobber: bool = False) -> None: """'Register' cache implementation. Parameters ---------- clobber: bool, optional If set to True (default is False) - allow to overwrite existing entry. Raises ------ ValueError """ name = cls.name if not clobber and name in caches: raise ValueError(f"Cache with name {name!r} is already known: {caches[name]}") caches[name] = cls for c in ( BaseCache, MMapCache, BytesCache, ReadAheadCache, BlockCache, FirstChunkCache, AllBytes, KnownPartsOfAFile, BackgroundBlockCache, ): register_cache(c)