import torch, os import torch.nn.functional as F from torchvision.transforms.functional import normalize import numpy as np from transformers import Pipeline from transformers.image_utils import load_image from skimage import io from PIL import Image class RMBGPipe(Pipeline): def __init__(self,**kwargs): Pipeline.__init__(self,**kwargs) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model.to(self.device) self.model.eval() def _sanitize_parameters(self, **kwargs): # parse parameters preprocess_kwargs = {} postprocess_kwargs = {} if "model_input_size" in kwargs : preprocess_kwargs["model_input_size"] = kwargs["model_input_size"] if "return_mask" in kwargs: postprocess_kwargs["return_mask"] = kwargs["return_mask"] return preprocess_kwargs, {}, postprocess_kwargs def preprocess(self,input_image,model_input_size: list=[1024,1024]): # preprocess the input orig_im = load_image(input_image) orig_im = np.array(orig_im) orig_im_size = orig_im.shape[0:2] preprocessed_image = self.preprocess_image(orig_im, model_input_size).to(self.device) inputs = { "preprocessed_image":preprocessed_image, "orig_im_size":orig_im_size, "input_image" : input_image } return inputs def _forward(self,inputs): result = self.model(inputs.pop("preprocessed_image")) inputs["result"] = result return inputs def postprocess(self,inputs,return_mask:bool=False ): result = inputs.pop("result") orig_im_size = inputs.pop("orig_im_size") input_image = inputs.pop("input_image") result_image = self.postprocess_image(result[0][0], orig_im_size) pil_im = Image.fromarray(result_image) if return_mask ==True : return pil_im input_image = load_image(input_image) no_bg_image = input_image.copy() no_bg_image.putalpha(pil_im) return no_bg_image # utilities functions def preprocess_image(self,im: np.ndarray, model_input_size: list=[1024,1024]) -> torch.Tensor: # same as utilities.py with minor modification if len(im.shape) < 3: im = im[:, :, np.newaxis] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear') image = torch.divide(im_tensor,255.0) image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) return image def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray: result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0) ma = torch.max(result) mi = torch.min(result) result = (result-mi)/(ma-mi) im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8) im_array = np.squeeze(im_array) return im_array