from skimage import io import torch, os from PIL import Image from briarmbg import BriaRMBG from utilities import preprocess_image, postprocess_image from huggingface_hub import hf_hub_download def example_inference(): im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg" net = BriaRMBG() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") net.to(device) net.eval() # prepare input model_input_size = [1024,1024] orig_im = io.imread(im_path) orig_im_size = orig_im.shape[0:2] image = preprocess_image(orig_im, model_input_size).to(device) # inference result=net(image) # post process result_image = postprocess_image(result[0][0], orig_im_size) # save result pil_mask_im = Image.fromarray(result_image) orig_image = Image.open(im_path) no_bg_image = orig_image.copy() no_bg_image.putalpha(pil_mask_im) no_bg_image.save("example_image_no_bg.png") if __name__ == "__main__": example_inference()