--- language: - tr pipeline_tag: text-generation tags: - llama - smollm - turkish - text-generation-inference --- # smollm-turkish-base Turkish base model with early stopped training ## Model Description - **Model Type:** LLaMA Architecture - **Training Framework:** Nanotron - **Base Tokenizer:** bonur/gpt2-turkish-tokenizer - **Context Length:** 4096 - **Vocab Size:** 52000 - **Hidden Size:** 576 - **Number of Layers:** 30 - **Number of Attention Heads:** 9 - **Number of Key/Value Heads:** 3 ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("bonur/smollm-turkish-base") tokenizer = AutoTokenizer.from_pretrained("bonur/smollm-turkish-base") text = "Your prompt here" inputs = tokenizer(text, return_tensors="pt", padding=True) outputs = model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=100, do_sample=True, temperature=0.7, top_p=0.9 ) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ```