--- license: mit --- # SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation **SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation** [[Paper](https://arxiv.org/abs/2409.13321)][Code](https://github.com/knowlab/SLaVA-CXR)
## Contents - [Install](#install) - [LLaVA-Phi Weights](#llava-weights) - [Train](#train) - [Evaluation](#evaluation) ## Environment ```Shell conda create -n slava_cxr python=3.10 -y conda activate slava_cxr pip install --upgrade pip # enable PEP 660 support pip install -e . ``` ## MODEL The SLaVA-CXR model can be downloaded in [HuggingFace](https://drive.google.com/file/d/1c0BXEuDy8Cmm2jfN0YYGkQxFZd2ZIoLg/view). ## Train The training codes is made available. The training datasets are currently not available. ## Evaluation Evaluation dataset can be any chest X-ray frontal view image paired with a report. We used MIMIC-CXR and IU-Xray datasets in our paper for the evaluation. We have included IU-Xray questions for impression and findings section automation. Please download IU-Xray dataset [LINK](https://drive.google.com/file/d/1c0BXEuDy8Cmm2jfN0YYGkQxFZd2ZIoLg/view). ### Findings Generation ```Shell CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \ --model-path ./SLaVA-CXR \ --question-file iuxray_sample_findings.jsonl \ --image-folder path_to_iuxray_images \ --answers-file findings_result.jsonl \ --conv-mode default \ --max_new_tokens 512 ``` ### Impression Summarization ```Shell CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \ --model-path ./SLaVA-CXR \ --question-file iuxray_sample_impression.jsonl \ --image-folder path_to_iuxray_images \ --answers-file impression_result.jsonl \ --conv-mode default \ --max_new_tokens 256 ``` ## Citation ```bibtex @article{wu2024slava, title={SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation}, author={Wu, Jinge and Kim, Yunsoo and Shi, Daqian and Cliffton, David and Liu, Fenglin and Wu, Honghan}, journal={arXiv preprint arXiv:2409.13321}, year={2024} } ``` ## Acknowledgement We used the LLaVA-Phi codes to train our model - [LLaVA-Phi](https://github.com/zhuyiche/llava-phi)