--- license: apache-2.0 datasets: - blizet/Phishing_Email language: - en base_model: - NousResearch/Llama-2-7b-chat-hf pipeline_tag: text-generation library_name: adapter-transformers --- # Phishing Detection Model - Fine-Tuned LLaMA-2 This repository contains a fine-tuned version of the **LLaMA-2-7B** model for phishing email detection. The model analyzes emails for phishing attempts, urgency, grammatical errors, and suspicious elements, providing detailed insights. ## Model Details - **Base Model**: [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) - **Fine-Tuned Dataset**: Custom phishing dataset (25,000 samples) - **Framework**: [Transformers](https://huggingface.co/docs/transformers), [PEFT](https://huggingface.co/docs/peft), [TRL](https://github.com/huggingface/trl) - **Quantization**: 4-bit (QLoRA) ## Features 1. **Phishing Detection**: Identifies suspicious elements in emails. 2. **Context Analysis**: Evaluates urgency, grammar, sender details, and more. 3. **Detailed Responses**: Outputs structured feedback for 15 parameters. ## Example Usage ```python from transformers import pipeline # Load the pipeline pipe = pipeline("text-generation", model="blizet/Llama-Phishing-Finetune") # Analyze an email email_content = "Dear Customer, your account has been flagged. Click here to verify: http://example.com" result = pipe(f"[INST] Analyze this email for phishing: {email_content} [/INST]") print(result[0]["generated_text"])