--- license: apache-2.0 library_name: peft inference: true tags: - axolotl - generated_from_trainer - text-generation-inference base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: Mistral-7B-instruct-v0.2 results: [] pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true hub_model_id: malmarjeh/Mistral-7B-instruct-v0.2 load_in_8bit: false load_in_4bit: true strict: false datasets: - path: bitext/Bitext-customer-support-llm-chatbot-training-dataset type: system_prompt: "You are an expert in customer support." field_instruction: instruction field_output: response format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" #datasets: # - path: json # type: alpaca_w_system.load_open_orca #data_files: file.zip dataset_prepared_path: val_set_size: 0.05 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true pad_to_sequence_len: true eval_sample_packing: False lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: axolotl wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 8 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# Mistral-7B-instruct-v0.2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6865 | 0.01 | 1 | 2.0557 | | 0.6351 | 0.25 | 32 | 0.8355 | | 0.5724 | 0.5 | 64 | 0.7859 | | 0.5249 | 0.75 | 96 | 0.7711 | | 0.516 | 1.0 | 128 | 0.7667 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0