{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('bbbp_probab.csv')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 1., 0., 0., 1., 0., 0., 1., 1., 13., 3., 5., 4., 7.,\n", " 3., 22., 13., 14., 4., 5., 3.]),\n", " array([0.50096005, 0.5194553 , 0.53795054, 0.55644578, 0.57494103,\n", " 0.59343627, 0.61193151, 0.63042676, 0.648922 , 0.66741725,\n", " 0.68591249, 0.70440773, 0.72290298, 0.74139822, 0.75989347,\n", " 0.77838871, 0.79688395, 0.8153792 , 0.83387444, 0.85236968,\n", " 0.87086493]),\n", " )" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATWklEQVR4nO3df7RsZV3H8fdHkZIfCcQFAcFrhApZkl1NMxMlCyEUa5XiLzKVWErpWi1bRFq4KsNVWcssi5K8JWqWmBiaGoT4k7og5kVUCK/8uAiXEPGSScC3P/Y+Osw9586cmTnnzCPv11pnnZm997P3d54z5zPPPDN7JlWFJKk991vrAiRJkzHAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYB/h0tSSb5/wrZbkvzkEuuelOQLi22b5PQkfz1ZxRPVeUiS7UnuP6P9/UWS1/SXj0py/Sz22+/vXv22WpI8Ismnk3w9ya+u9vG1MgzwOdSH4Tf6ULopyd8k2WOt6xpUVR+tqkcsse51VfUSgCTr+weRXSY5TpJfTHJ33xfbk3yp74+HDxzv2qrao6ruHmNfHxt1zKo6pap+Z5J6FznmvR5Ad9ZvK+zXgYuqas+qeuPwyiQXJfnfvo+/luTiJD84sP6MJP838He4MsnPDaw/Ksk9A+tvSPLaoWNUkjsG1r9hVg+691UG+Pw6vqr2AB4DPBZ49fAGk4Zigz7Z98WDgJ8EvgFcmuRRsz7Qd3CgPBS4YsQ2p/b9/L3ARcDfDa3/+/6Bcg/glcDbkuw/sH7rwPofB16c5IShfTy6X3808FzgpZPcGHUM8DlXVTcAHwAeBd8axbw8yVXAVf2ylya5OsmtSc5LcuDQbo5Nck2SW5L8QZL79e0OTXJhkv/u152TZK+hto9N8rkkX+1Hvt/dt11yaqEfrb2tv3px//u2fuT15L7OwdHdfv0zjnUj+uLuqvqvqnoZ8BHgjL79vUb5/Uj7mn664EtJnpfkcOAvgCf0ddzWb/vWJG9O8v4kdwBP6Zf97tBtOr3voy1Jnjew/KIkLxm4/q1RfpKF2/6Z/pjPHu63JIf3+7gtyRVJnjGw7q1J/izJ+f1tuSTJoUv1T5Jn9Pu4rd/n4f3yC4GnAG/q63j4Uvvo+/ku4J3AETvZ5oPA14FF66mqLwGfWGofVfV54KP092tNxgCfc0kOBo4FPj2w+ATgR4EjkjwV+H3gF4ADgC/T/fMNehawgW40/0zglxZ237c9EDgcOJg+FAc8D/hpun/Uh7PIM4ERfqL/vVc/OvtIX9/zB7Y5EfjXqtq2jP2eCzxpeGGS3YE3Ak+vqj2BHwMur6orgVPoR/NVtddAs+cCvwfsCSw2xfJgYF/gIOAk4KwkI6dBqmrhtj+6P+bfD9X6AOB9wIeA/YBfAc4Z2veJwGuBvYGr+zp30IfyO+hGxuuA9wPvS7JrVT2VLixP7ev44s7qTrIr3d/9U0usT5LjgF2Bzy2xzWHAE3eyjyPo/n6fXmy9xmOAz69/6keJH6Mbbb5uYN3vV9WtVfUNun+0s6vqsqr6JvAbdKPM9QPbv77f/lrgT+hCgaq6uqo+XFXf7MPzDcCTh+p4U1VdV1W30oXHiTO4bRuB5y48EwBewI5P10fZCuyzxLp7gEcleWBV3VhVo6YO3ltVH6+qe6rqf5fY5jV9P30EOJ/uAXNajwf2AM6sqjur6kLgn7l3H59bVf/ej4rPAY5cYl/PBs7v/57/B/wh8EC6B7BxvbG/z20HTqV74Bj0C/36O4DzgNdV1W0D6w/sR/+3A18ELmHHB8TLknyV7oHrr4G/WUZ9GmKAz68TqmqvqnpoVb2sD+sF1w1cPpBu1A1AVW0H/ptutLjY9l/u2yxMXbyzf0HpduBtdCNNRrWdRlVdQhcCT07ySOD76QJhOQ4Cbl1k33fQhdkpwI399MMjR+zruhHrv9rvd8FM+qHfx3VVdc/Qvgf/dl8ZuPw/dIG/1L4G7wf30N2ug5bYfjG/2j8z+W7gZ4B/TPJDA+vf1d8nd6N7RvbCJL88sH5rv/57gL3oXqvYOHSMx1TV3lV1aFW9eui2a5kM8DYNfoTkVroXqIBvTSF8L3DDwDYHD1w+pG8D3fRJAT/U/9M9n25ahTHaTlLroI398V4A/ONORr5LeRbdtMCOB6z6YFU9jW5K6fPAX42oZdRHcu7d9+uCwX64A9htYN2DR+xr0Fbg4IFnIgv7vmGJ7Ufta/B+ELq/3bL31T8T+SjdlM1PLbHNFrrXZo5fYv3XgLcvtV6zYYC37+3Ai5IcmeS76KZaLun/wRa8Ksne/Xz6K4CFudg96Z4u35bkIOBVi+z/5UkekmQf4PSBtuPaRjel8X1Dy/+OLoSfD/ztODtKcv8kD0vyp8BR7PgUnyT79y/m7Q58k+72Lby98CbgIf0c73K9NsmuSZ5ENzr9h3755cDPJtkt3dsFXzzU7iZ2vO0LFp6J/HqSByQ5ii7whl/DGMe7gOOSHN3Prf8a3e3/xAT7IskT6F6AXHT6KclDgGN2sn4P4DlLrddsGOCNq6oLgNcA7wZupHtq+5yhzd4LXEoXNucDb+mXv5buhc2v9cvPXeQQb6d7ke2a/ud3F9lmZ/X9D93c+cf7+dHH98uvBy6jG/0uOpIe8IQk24Hb6d7e9j3AY6vqs4tsez+68NpKN8XyZOBl/boL6QLlK0luWcbN+Arw1X6f5wCn9O+iAPhj4E66oN7Yrx90BrCxv+33mjevqjuBZwBPB24B/hx44cC+x1ZVX6B7MPzTfl/H070V9c5l7GbhXSrb6R5gX11VHxhY/+yB9f8BfJx7P4geOLD+y3SvUTwPrZj4hQ5aK0nOpps3Xe47WyQB95UTQTRn+nfJ/Czww2tcitQsp1C06pL8DrAZ+IP+hA9JE3AKRZIa5Qhckhq1qnPg++67b61fv341DylJzbv00ktvqaodPitoVQN8/fr1bNq0aTUPKUnNS/LlxZY7hSJJjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY3y42Sl+6j1p50/cdstZx43w0o0KUfgktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRIwM8ycFJ/i3JlUmuSPKKfvk+ST6c5Kr+994rX64kacE4I/C7gF+rqsOBxwMvT3IEcBpwQVUdBlzQX5ckrZKRAV5VN1bVZf3lrwNXAgcBzwQ29pttBE5YoRolSYtY1hx4kvXADwOXAPtX1Y3QhTyw38yrkyQtaewAT7IH8G7glVV1+zLanZxkU5JN27Ztm6RGSdIixgrwJA+gC+9zqurcfvFNSQ7o1x8A3LxY26o6q6o2VNWGdevWzaJmSRLjvQslwFuAK6vqDQOrzgNO6i+fBLx39uVJkpYyzrfSPxF4AfDZJJf3y04HzgTeleTFwLXAz69IhZKkRY0M8Kr6GJAlVh8923IkSePyTExJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1KiRAZ7k7CQ3J9k8sOyMJDckubz/OXZly5QkDRtnBP5W4JhFlv9xVR3Z/7x/tmVJkkYZGeBVdTFw6yrUIklahmnmwE9N8p/9FMveM6tIkjSWSQP8zcChwJHAjcAfLbVhkpOTbEqyadu2bRMeTpI0bKIAr6qbquruqroH+CvgcTvZ9qyq2lBVG9atWzdpnZKkIRMFeJIDBq4+C9i81LaSpJWxy6gNkrwDOArYN8n1wG8DRyU5EihgC/DLK1eiJGkxIwO8qk5cZPFbVqAWSdIyeCamJDXKAJekRhngktQoA1ySGjXyRUxJmrX1p50/cdstZx43w0ra5ghckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1ChP5NFc8QSPNkzzd9LsOAKXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEaNDPAkZye5OcnmgWX7JPlwkqv633uvbJmSpGHjjMDfChwztOw04IKqOgy4oL8uSVpFIwO8qi4Gbh1a/ExgY395I3DCbMuSJI0y6Rz4/lV1I0D/e7+lNkxycpJNSTZt27ZtwsNJkoat+IuYVXVWVW2oqg3r1q1b6cNJ0n3GpAF+U5IDAPrfN8+uJEnSOCYN8POAk/rLJwHvnU05kqRxjfM2wncAnwQekeT6JC8GzgSeluQq4Gn9dUnSKtpl1AZVdeISq46ecS2SpGXwTExJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktSoXda6AOm+bv1p50/cdsuZx82wErXGEbgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNmurzwJNsAb4O3A3cVVUbZlGUJGm0WXyhw1Oq6pYZ7EeStAxOoUhSo6YdgRfwoSQF/GVVnTW8QZKTgZMBDjnkkCkPJ62Mab7WDPxqs1Z8p3193bQj8CdW1WOApwMvT/ITwxtU1VlVtaGqNqxbt27Kw0mSFkwV4FW1tf99M/Ae4HGzKEqSNNrEAZ5k9yR7LlwGfgrYPKvCJEk7N80c+P7Ae5Is7OftVfUvM6lKkjTSxAFeVdcAj55hLZKkZfBthJLUKANckhplgEtSo2ZxKr10nzftiUAan339bY7AJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUamqVTvYhg0batOmTat2PLXHs+z0nWqar2RLcmlVbRhe7ghckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGrXLWhcwrmm+qWWab8KYVot1+604UhscgUtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGTRXgSY5J8oUkVyc5bVZFSZJGmzjAk9wf+DPg6cARwIlJjphVYZKknZtmBP444Oqquqaq7gTeCTxzNmVJkkaZ5kzMg4DrBq5fD/zo8EZJTgZO7q9uT/KFCY61L3DLBO26Gl4/actlm6rOYStU90xrXCHWOBvWOBszqXHK/+eHLrZwmgDPIstqhwVVZwFnTXEckmyqqg3T7GM1tFCnNc6GNc6GNU5nmimU64GDB64/BNg6XTmSpHFNE+D/ARyW5GFJdgWeA5w3m7IkSaNMPIVSVXclORX4IHB/4OyqumJmld3bVFMwq6iFOq1xNqxxNqxxCqnaYdpaktQAz8SUpEYZ4JLUqDUP8FGn4yc5KsnXklze//zWuG3npMYtST7bL9+0VjUO1Hl5kiuSfGQ5beegxrnoxySvGvg7b05yd5J9xr19c1LnvPTlg5K8L8ln+r/3i8ZtOyc1rko/7lRVrdkP3Yuf/wV8H7Ar8BngiKFtjgL+eZK2a11jv24LsO8c9ONewOeAQ/rr+81hPy5a4zz149D2xwMXrmY/TlvnPPUlcDrw+v7yOuDWftt5uk8uWuNq9eOon7UegU9zOv5qncrfwkcGjFPjc4Fzq+pagKq6eRlt17rG1bLcvjgReMeEbdeqztUyTo0F7JkkwB504XjXmG3Xusa5sNYBvtjp+Actst0T+qcwH0jyA8tsu5Y1QncH+FCSS9N9rMBKGKfGhwN7J7mor+WFy2i71jXC/PQjAEl2A44B3r3ctjMwTZ0wP335JuBwuhMAPwu8oqruGbPtWtcIq9OPO7XW30o/zun4lwEPrartSY4F/gk4bMy2szBNjQBPrKqtSfYDPpzk81V18RrUuAvwI8DRwAOBTyb51JhtZ2HiGqvqi8xPPy44Hvh4Vd06QdtpTVMnzE9f/jRwOfBU4NC+lo+O2XYWJq6xqm5ndfpxp9Z6BD7ydPyqur2qtveX3w88IMm+47Sdgxqpqq3975uB99A9bVv1Gvtt/qWq7qiqW4CLgUeP2Xata5ynflzwHO49LbGaHy0xTZ3z1Jcvopsyq6q6GvgS8Mgx2651javVjzu3lhPwdCOua4CH8e0XEX5gaJsH8+0Tjh4HXEv3yDmy7RzUuDuwZ798d+ATwDFrVOPhwAX9trsBm4FHzVk/LlXj3PRjv92D6OZCd19u2zmoc276EngzcEZ/eX/gBrpP/pun++RSNa5KP468Dat9wEU68Vjgi3SvBv9mv+wU4JT+8qnAFX3nfgr4sZ21naca6V7d/kz/c8Va1thffxXduzw2A6+ct35cqsY57MdfBN45Ttt5q3Oe+hI4EPgQ3dzyZuD583afXKrG1ezHnf14Kr0kNWqt58AlSRMywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1Kj/h9d7rJaoGYU3QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.title('Probability Distribution of BBBP')\n", "plt.hist(df.Probability, bins = 20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "myenv", "language": "python", "name": "myenv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }