{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('bbbp_fsr_probab.csv')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 1., 0., 0., 0., 2., 2., 2., 2., 6., 3., 10., 5., 7.,\n", " 12., 10., 12., 4., 8., 8., 6.]),\n", " array([0.53795552, 0.55553919, 0.57312285, 0.59070652, 0.60829018,\n", " 0.62587385, 0.64345751, 0.66104118, 0.67862484, 0.69620851,\n", " 0.71379218, 0.73137584, 0.74895951, 0.76654317, 0.78412684,\n", " 0.8017105 , 0.81929417, 0.83687783, 0.8544615 , 0.87204516,\n", " 0.88962883]),\n", " )" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEICAYAAACgQWTXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAUqklEQVR4nO3de5CsdX3n8fdHkFUuCoYBw2U8ahQhxNsejegaCOgGIahxtyIoXojxhDJE3Erp4m3VSmKwTLmJMat1oiiJCEkQ4wWNEAjilYRr5KYQOHI5KBJEhBhR+e4fzzPaZ87MmZ7uPjN9fr5fVVPT/Vy//ZueT//693Q/T6oKSVIbHrDaBUiSJsdQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKHeuCSV5BdGXHdDkmctMu+ZSb620LJJ3pDk/aNVPFKds0nuSbLdhLb3viRv7m8fkuSWSWy3394m7bZSkuyX5LIk30vy6pXev1aOoT6F+oD8fh9U30rywSQ7r3Zdg6rq81W13yLz3l5Vvw2QZE3/wrL9KPtJ8vIkP+7b4p4kN/bt8diB/d1UVTtX1Y+H2NYXltpnVR1fVX8wSr0L7HOTF9UttdtW9jrggqraparePX9mkguS/Gffxt9NcmGSXxqY/9YkPxz4O1yT5H8MzD8kyf0D829N8rZ5+6gk9w7Mf9ekXoj1U4b69DqqqnYGngw8BXjT/AVGDcpt0Jf7tngo8Czg+8AlSQ6c9I4aDplHAFctscwJfTv/HHAB8Nfz5v9N/+K5M/Aa4MNJ9hyYv3Fg/n8DXpHk+fO28YR+/mHAi4BXjvJgtDhDfcpV1a3AZ4AD4Se9nd9Nch1wXT/tlUmuT3Jnkk8k2WveZo5IckOSO5K8M8kD+vUeneT8JP/ezzstya7z1n1KkquTfKfvIT+oX3fRYYm+V/fh/u6F/e+7+h7awX2dg73APfp3JjNLtMWPq+rfqupVwOeAt/brb/JuoO+R39APNdyY5MVJ9gfeBxzU13FXv+yHkrw3yaeT3Av8aj/tD+c9pjf0bbQhyYsHpl+Q5LcH7v/k3UCSucd+Rb/PF85vtyT799u4K8lVSZ47MO9DSf4iydn9Y7koyaMXa58kz+23cVe/zf376ecDvwq8p6/jsYtto2/nHwFnAAdsYZnPAt8DFqynqm4EvrTYNqrqWuDz9M9rTY6hPuWS7AscAVw2MPn5wC8DByQ5FPhj4DeBnwe+QfcPOeg3gLV0vf7nAb81t/l+3b2A/YF96YNywIuBX6P7530sC7xjWMKv9L937Xtxn+vrO3ZgmWOAf6yqby9ju2cBz5w/MclOwLuB51TVLsDTgcur6hrgePpef1XtOrDai4A/AnYBFhqeeTiwO7A38DJgfZIlh1Cqau6xP6Hf59/Mq/WBwCeBc4A9gN8DTpu37WOAtwG7Adf3dW6mD+rT6XrQM8CngU8m2aGqDqUL0BP6Or6+pbqT7ED3d//KIvOT5EhgB+DqRZZ5DPCMLWzjALq/32ULzdfoDPXp9fd9b/ILdL3Stw/M++OqurOqvk/3z3dKVV1aVT8AXk/XG10zsPw7+uVvAv6ULiioquur6tyq+kEfqO8CDp5Xx3uq6uaqupMuUI6ZwGM7FXjR3DsG4CVs/lZ/KRuBhy0y737gwCQPrqrbqmqpYYePV9UXq+r+qvrPRZZ5c99OnwPOpnsRHdfTgJ2Bk6vqvqo6H/gUm7bxWVX1z33v+TTgiYts64XA2f3f84fAnwAPpntRG9a7++fcPcAJdC8mg36zn38v8Ang7VV118D8vfp3CXcDXwcuYvMXyUuTfIfuxez9wAeXUZ+GYKhPr+dX1a5V9YiqelUf4HNuHri9F13vHICqugf4d7pe5ULLf6NfZ27Y44z+oNXdwIfpeqQste44quoiumA4OMnjgF+gC4nl2Bu4c4Ft30sXcMcDt/VDF49bYls3LzH/O/1250ykHfpt3FxV98/b9uDf7psDt/+D7kVgsW0NPg/up3tcey+y/EJe3b+DeRDw68CZSR4/MP9v++fkjnTv3F6a5HcG5m/s5z8E2JXu2Mep8/bx5KraraoeXVVvmvfYNQGG+rZp8NSaG+kOggE/GX74OeDWgWX2Hbg9268D3dBLAY/v/xGPpRuSYYh1R6l10Kn9/l4CnLmFHvJifoNuSGHzHVZ9tqqeTTccdS3wl0vUstSpSnfr23XOYDvcC+w4MO/hS2xr0EZg34F3LHPbvnWR5Zfa1uDzIHR/u2Vvq3/H8nm64Z7/vsgyG+iO9Ry1yPzvAh9ZbL62HkN92/cR4LgkT0zyX+iGaS7q/+nmvDbJbv34/InA3NjuLnRvte9Ksjfw2gW2/7tJ9knyMOANA+sO69t0wyGPmjf9r+mC+Vjgr4bZUJLtkjwyyZ8Dh7D58ABJ9uwPGO4E/IDu8c191PFbwD79mPFyvS3JDkmeSdeL/bt++uXAC5LsmO6ji6+Yt9632Pyxz5l7x/K6JA9McghdCM4/JjKMvwWOTHJYP1b/+3SP/0sjbIskB9Ed5Fxw6CrJPsDhW5i/M3D0YvO19Rjq27iqOg94M/BR4Da6t8VHz1vs48AldAF0NvCBfvrb6A6efrefftYCu/gI3YG8G/qfP1xgmS3V9x90Y/Ff7Mdbn9ZPvwW4lK6XvGCPe8BBSe4B7qb7qN1DgKdU1VcXWPYBdIG2kW545mDgVf288+lC5ptJ7ljGw/gm8J1+m6cBx/ef3gD4v8B9dOF9aj9/0FuBU/vHvsk4fFXdBzwXeA5wB/D/gJcObHtoVfU1uhfIP++3dRTdx2LvW8Zm5j4dcw/di+6bquozA/NfODD/X4AvsukL614D879Bd8zjxWhFxYtkaLUkOYVuHHa5n6iRtIiflS+vaMr0n855AfCkVS5FaorDL1pxSf4AuBJ4Z/8lFUkT4vCLJDXEnrokNWRFx9R33333WrNmzUruUpK2eZdccskdVbXFcyPNWdFQX7NmDRdffPFK7lKStnlJvrH0Uh2HXySpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JDlgz1JKckuT3JlQPT3pnk2iT/muRj2fy6lpKkVTBMT/1DdOdNHnQucGBVPZ7uslWvn3BdkqQRLBnqVXUh8y4bVlXn9NdMhO7CsvtshdokScs0iW+U/hZbuBpOknXAOoDZ2dkJ7E7SnDUnnT3yuhtOPnJV9jvuvrVlYx0oTfJGYO4q5wuqqvVVtbaq1s7MDHXqAknSiEbuqSd5Gd21Gg8rz98rSVNhpFBPcjjwv4GD+2tQSpKmwDAfaTwd+DKwX5JbkrwCeA/dlejPTXJ5kvdt5TolSUNYsqdeVccsMPkDC0yTJK0yv1EqSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ1ZMtSTnJLk9iRXDkx7WJJzk1zX/95t65YpSRrGMD31DwGHz5t2EnBeVT0GOK+/L0laZUuGelVdCNw5b/LzgFP726cCz59sWZKkUWw/4np7VtVtAFV1W5I9FlswyTpgHcDs7OyIu5O2rjUnnT3W+htOPnJClayccR+zptNWP1BaVeuram1VrZ2Zmdnau5Okn2mjhvq3kvw8QP/79smVJEka1aih/gngZf3tlwEfn0w5kqRxDPORxtOBLwP7JbklySuAk4FnJ7kOeHZ/X5K0ypY8UFpVxywy67AJ1yJJGpPfKJWkhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktSQsUI9yf9KclWSK5OcnuRBkypMkrR8I4d6kr2BVwNrq+pAYDvg6EkVJklavnGHX7YHHpxke2BHYOP4JUmSRrX9qCtW1a1J/gS4Cfg+cE5VnTN/uSTrgHUAs7Ozo+5OkgBYc9LZq7LfDScfuSr7Xa5xhl92A54HPBLYC9gpybHzl6uq9VW1tqrWzszMjF6pJGlJ4wy/PAu4saq+XVU/BM4Cnj6ZsiRJoxgn1G8CnpZkxyQBDgOumUxZkqRRjBzqVXURcCZwKfDVflvrJ1SXJGkEIx8oBaiqtwBvmVAtkqQx+Y1SSWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIWOd+0XS+Fbrog9qkz11SWqIoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhowV6kl2TXJmkmuTXJPkoEkVJklavnFPvftnwD9U1f9MsgOw4wRqkiSNaORQT/IQ4FeAlwNU1X3AfZMpS5I0inF66o8Cvg18MMkTgEuAE6vq3sGFkqwD1gHMzs6OsTv9LBjnghEbTj5ygpVImxr3YiYr9fwcZ0x9e+DJwHur6knAvcBJ8xeqqvVVtbaq1s7MzIyxO0nSUsYJ9VuAW6rqov7+mXQhL0laJSOHelV9E7g5yX79pMOAqydSlSRpJON++uX3gNP6T77cABw3fkmSpFGNFepVdTmwdjKlSJLG5TdKJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktSQcc/SKInxr4ojTYo9dUlqiKEuSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIaMHepJtktyWZJPTaIgSdLoJtFTPxG4ZgLbkSSNaaxQT7IPcCTw/smUI0kax7gXyfhT4HXALostkGQdsA5gdnZ2zN1JaoEXFdl6Ru6pJ/l14PaqumRLy1XV+qpaW1VrZ2ZmRt2dJGkI4wy/PAN4bpINwBnAoUk+PJGqJEkjGTnUq+r1VbVPVa0BjgbOr6pjJ1aZJGnZ/Jy6JDVk3AOlAFTVBcAFk9iWJGl09tQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SGTOTcL9I08MILkj11SWqKoS5JDTHUJakhhrokNcRQl6SGGOqS1BBDXZIaYqhLUkMMdUlqiKEuSQ0x1CWpIYa6JDXEUJekhowc6kn2TfJPSa5JclWSEydZmCRp+cY59e6PgN+vqkuT7AJckuTcqrp6QrVJkpZp5J56Vd1WVZf2t78HXAPsPanCJEnLN5GLZCRZAzwJuGiBeeuAdQCzs7OT2N3PDC/6IGm5xj5QmmRn4KPAa6rq7vnzq2p9Va2tqrUzMzPj7k6StAVjhXqSB9IF+mlVddZkSpIkjWqcT78E+ABwTVW9a3IlSZJGNU5P/RnAS4BDk1ze/xwxobokSSMY+UBpVX0ByARrkSSNyW+USlJDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUEENdkhpiqEtSQwx1SWqIoS5JDTHUJakhE7ny0UoY5ypAG04+coKVSNL0sqcuSQ0x1CWpIYa6JDXEUJekhhjqktQQQ12SGmKoS1JDDHVJaoihLkkNMdQlqSGGuiQ1xFCXpIYY6pLUkLFCPcnhSb6W5PokJ02qKEnSaEYO9STbAX8BPAc4ADgmyQGTKkyStHzj9NSfClxfVTdU1X3AGcDzJlOWJGkU41wkY2/g5oH7twC/PH+hJOuAdf3de5J8bYx9Dmt34I6f1PCOFdjj6DapdcpZ69azLdVrrSMYMocWq/cRw+5nnFDPAtNqswlV64H1Y+xn2ZJcXFVrV3Kfo7LWrWNbqhW2rXqtdeuZRL3jDL/cAuw7cH8fYOM4xUiSxjNOqP8L8Jgkj0yyA3A08InJlCVJGsXIwy9V9aMkJwCfBbYDTqmqqyZW2XhWdLhnTNa6dWxLtcK2Va+1bj1j15uqzYbBJUnbKL9RKkkNMdQlqSHbVKgvdVqCJIck+W6Sy/uf/zMwb0OSr/bTL17tWgfqvTzJVUk+t5x1p6zeqWrbJK8deA5cmeTHSR42zLpTVuu0tetDk3wyyRX9c+C4YdedwnqnrW13S/KxJP+a5J+THDjsupupqm3ih+5g7L8BjwJ2AK4ADpi3zCHApxZZfwOw+xTVuitwNTDb399j2HWnqd5pbNt5yx8FnL8abTtOrdPYrsAbgHf0t2eAO/tlp/U5u2C9U9q27wTe0t9+HHDeqM/Zbamnvi2dlmCYWl8EnFVVNwFU1e3LWHea6l1py22fY4DTR1x3NWtdacPUWsAuSQLsTBeSPxpy3Wmqd6UNU+sBwHkAVXUtsCbJnkOuu4ltKdQXOi3B3gssd1D/duszSX5xYHoB5yS5JN2pC7amYWp9LLBbkgv6ml66jHUnbZx6YfraFoAkOwKHAx9d7roTMk6tMH3t+h5gf7ovGX4VOLGq7h9y3Ukbp16Yvra9AngBQJKn0p0WYJ8h193EOKcJWGnDnJbgUuARVXVPkiOAvwce0897RlVtTLIHcG6Sa6vqwlWsdXvgvwKHAQ8GvpzkK0OuO2kj11tVX2f62nbOUcAXq+rOEdadhHFqhelr118DLgcOBR7d1/T5IdedtJHrraq7mb62PRn4sySX070AXUb3rmLZbbst9dSXPC1BVd1dVff0tz8NPDDJ7v39jf3v24GP0b2tWbVa+2X+oarurao7gAuBJwy57qSNU+80tu2co9l0OGOl23acWqexXY+jG4KrqroeuJFu/Hdan7OL1Tt1bdtn13FV9UTgpXTHAG4cZt3NrMSBgkn80PUUbwAeyU8PGPzivGUezk+/UPVU4Ca6V7qdgF366TsBXwIOX+Va96cbQ9se2BG4EjhwmHWnrN6pa9t+uYfSjaHutNx1p6TWqWtX4L3AW/vbewK30p1VcFqfs4vVO41tuys/PYj7SuCvRn3ObrVG30qNcwTwdbqjwW/spx0PHN/fPgG4qn/gXwGe3k9/VD/tin7+G1e71v7+a+k+UXIl8JotrTut9U5x274cOGOYdaex1mlsV2Av4By64YErgWOn+Tm7WL1T2rYHAdcB1wJnAbuN2raeJkCSGrItjalLkpZgqEtSQwx1SWqIoS5JDTHUJakhhrokNcRQl6SG/H/r4BO9qJlXrQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.title('Probability Distribution of BBBP')\n", "plt.hist(df.Probability, bins = 20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "myenv", "language": "python", "name": "myenv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }