--- license: llama3 tags: - function-calling --- # BigStorm - ExLLamaV2 (Exl2) Quantization - 6.0 bpw target - 8 head bits Enjoy! Raise an issue if you'd like other BPW levels. #### Base Model Card Follows: --- # FireFunction V2: Fireworks Function Calling Model [**Try on Fireworks**](https://fireworks.ai/models/fireworks/firefunction-v2) | [**API Docs**](https://readme.fireworks.ai/docs/function-calling) | [**Demo App**](https://functional-chat.vercel.app/) | [**Discord**](https://discord.gg/mMqQxvFD9A) firefunction FireFunction is a state-of-the-art function calling model with a commercially viable license. View detailed info in our [announcement blog](https://fireworks.ai/blog/firefunction-v2-launch-post). Key info and highlights: **Comparison with other models:** - Competitive with GPT-4o at function-calling, scoring 0.81 vs 0.80 on a medley of public evaluations - Trained on Llama 3 and retains Llama 3’s conversation and instruction-following capabilities, scoring 0.84 vs Llama 3’s 0.89 on MT bench - Significant quality improvements over FireFunction v1 across the broad range of metrics **General info:** 🐾 Successor of the [FireFunction](https://fireworks.ai/models/fireworks/firefunction-v1) model 🔆 Support of parallel function calling (unlike FireFunction v1) and good instruction following 💡 Hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v2) platform at < 10% of the cost of GPT 4o and 2x the speed ## Intended Use and Limitations ### Supported usecases The model was tuned to perfom well on a range of usecases including: * general instruction following * multi-turn chat mixing vanilla messages with function calls * single- and parallel function calling * up to 20 function specs supported at once * structured information extraction The model has an 8k context window, like Llama 3 ### Out-of-Scope Use The model was not optimized for the following use cases: * 100+ function specs * nested function calling ## Metrics | Benchmark | Firefunction v1 | Firefunction v2 | Llama 3 70b Instruct | Gpt-4o | |:-----------------------------------|:----------------|:----------------|:---------------------|:-------| | Gorilla simple | 0.91 | 0.94 | 0.925 | 0.88 | | Gorilla multiple_function | 0.92 | 0.91 | 0.86 | 0.91 | | Gorilla parallel_function | 0 | 0.9 | 0.86 | 0.89 | | Gorilla parallel_multiple_function | 0 | 0.8 | 0.615 | 0.72 | | Nexus parallel | 0.38 | 0.53 | 0.3 | 0.47 | | Mtbench | 0.73 | 0.84 | 0.89 | 0.93 | | Average | 0.49 | 0.82 | 0.74 | 0.8 | ## Example Usage See [documentation](https://readme.fireworks.ai/docs/function-calling) for more detail. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import json from datetime import datetime device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v2", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v2") function_spec = [ { "name": "get_stock_price", "description": "Get the current stock price", "parameters": { "type": "object", "properties": { "symbol": { "type": "string", "description": "The stock symbol, e.g. AAPL, GOOG" } }, "required": [ "symbol" ] } }, { "name": "check_word_anagram", "description": "Check if two words are anagrams of each other", "parameters": { "type": "object", "properties": { "word1": { "type": "string", "description": "The first word" }, "word2": { "type": "string", "description": "The second word" } }, "required": [ "word1", "word2" ] } } ] functions = json.dumps(function_spec, indent=4) messages = [ {'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'}, {'role': 'user', 'content': 'Hi, can you tell me the current stock price of google and netflix?'} ] now = datetime.now().strftime('%Y-%m-%d %H:%M:%S') model_inputs = tokenizer.apply_chat_template(messages, functions=functions, datetime=now, return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs, max_new_tokens=128) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Resources * [Fireworks discord with function calling channel](https://discord.gg/mMqQxvFD9A) * [Documentation](https://readme.fireworks.ai/docs/function-calling) * [Demo app](https://functional-chat.vercel.app/) * [Try in Fireworks prompt playground UI](https://fireworks.ai/models/fireworks/firefunction-v2)