--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - bibekbehera/autotrain-data-intent_classification_chope co2_eq_emissions: emissions: 4.711456517910571 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2429575593 - CO2 Emissions (in grams): 4.7115 ## Validation Metrics - Loss: 0.183 - Accuracy: 0.941 - Macro F1: 0.817 - Micro F1: 0.941 - Weighted F1: 0.942 - Macro Precision: 0.796 - Micro Precision: 0.941 - Weighted Precision: 0.943 - Macro Recall: 0.842 - Micro Recall: 0.941 - Weighted Recall: 0.941 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/bibekbehera/autotrain-intent_classification_chope-2429575593 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bibekbehera/autotrain-intent_classification_chope-2429575593", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bibekbehera/autotrain-intent_classification_chope-2429575593", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```